Objectives: To generate pseudo-CT (pCT) images of the pelvis from zero echo time (ZTE) MR sequences and compare them to conventional CT. Methods: Ninety-one patients were prospectively scanned with CT and MRI including ZTE sequences of the pelvis. Eleven ZTE image volumes were excluded due to implants and severe B1 field inhomogeneity. Out of the 80 data sets, 60 were used to train and update a deep learning (DL) model for pCT image synthesis from ZTE sequences while the remaining 20 cases were selected as an evaluation cohort. CT and pCT images were assessed qualitatively and quantitatively by two readers. Results: Mean pCT ratings of qualitative parameters were good to perfect (2-3 on a 4-point scale). Overall intermodality agreement between CT and pCT was good (ICC = 0.88 (95% CI: 0.85-0.90); p < 0.001) with excellent interreader agreements for pCT (ICC = 0.91 (95% CI: 0.88-0.93); p < 0.001). Most geometrical measurements did not show any significant difference between CT and pCT measurements (p > 0.05) with the exception of transverse pelvic diameter measurements and lateral center-edge angle measurements (p = 0.001 and p = 0.002, respectively). Image quality and tissue differentiation in CT and pCT were similar without significant differences between CT and pCT CNRs (all p > 0.05). Conclusions: Using a DL-based algorithm, it is possible to synthesize pCT images of the pelvis from ZTE sequences. The pCT images showed high bone depiction quality and accurate geometrical measurements compared to conventional CT. CRITICAL RELEVANCE STATEMENT: pCT images generated from MR sequences allow for high accuracy in evaluating bone without the need for radiation exposure. Radiological applications are broad and include assessment of inflammatory and degenerative bone disease or preoperative planning studies. Key points: pCT, based on DL-reconstructed ZTE MR images, may be comparable with true CT images. Overall, the intermodality agreement between CT and pCT was good with excellent interreader agreements for pCT. Geometrical measurements and tissue differentiation were similar in CT and pCT images.

Deep learning-based pseudo-CT synthesis from zero echo time MR sequences of the pelvis / J.M. Getzmann, E. Deininger-Czermak, S. Melissanidis, F. Ensle, S.S. Kaushik, F. Wiesinger, C. Cozzini, L.M. Sconfienza, R. Guggenberger. - In: INSIGHTS INTO IMAGING. - ISSN 1869-4101. - 15:1(2024 Aug 09), pp. 202.1-202.12. [Epub ahead of print] [10.1186/s13244-024-01751-3]

Deep learning-based pseudo-CT synthesis from zero echo time MR sequences of the pelvis

L.M. Sconfienza
Penultimo
;
2024

Abstract

Objectives: To generate pseudo-CT (pCT) images of the pelvis from zero echo time (ZTE) MR sequences and compare them to conventional CT. Methods: Ninety-one patients were prospectively scanned with CT and MRI including ZTE sequences of the pelvis. Eleven ZTE image volumes were excluded due to implants and severe B1 field inhomogeneity. Out of the 80 data sets, 60 were used to train and update a deep learning (DL) model for pCT image synthesis from ZTE sequences while the remaining 20 cases were selected as an evaluation cohort. CT and pCT images were assessed qualitatively and quantitatively by two readers. Results: Mean pCT ratings of qualitative parameters were good to perfect (2-3 on a 4-point scale). Overall intermodality agreement between CT and pCT was good (ICC = 0.88 (95% CI: 0.85-0.90); p < 0.001) with excellent interreader agreements for pCT (ICC = 0.91 (95% CI: 0.88-0.93); p < 0.001). Most geometrical measurements did not show any significant difference between CT and pCT measurements (p > 0.05) with the exception of transverse pelvic diameter measurements and lateral center-edge angle measurements (p = 0.001 and p = 0.002, respectively). Image quality and tissue differentiation in CT and pCT were similar without significant differences between CT and pCT CNRs (all p > 0.05). Conclusions: Using a DL-based algorithm, it is possible to synthesize pCT images of the pelvis from ZTE sequences. The pCT images showed high bone depiction quality and accurate geometrical measurements compared to conventional CT. CRITICAL RELEVANCE STATEMENT: pCT images generated from MR sequences allow for high accuracy in evaluating bone without the need for radiation exposure. Radiological applications are broad and include assessment of inflammatory and degenerative bone disease or preoperative planning studies. Key points: pCT, based on DL-reconstructed ZTE MR images, may be comparable with true CT images. Overall, the intermodality agreement between CT and pCT was good with excellent interreader agreements for pCT. Geometrical measurements and tissue differentiation were similar in CT and pCT images.
Artificial intelligence; Deep learning; Magnetic resonance imaging; Synthetic computed tomography; Zero echo time;
Settore MED/36 - Diagnostica per Immagini e Radioterapia
9-ago-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
s13244-024-01751-3.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1089650
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact