Recent developments have led to the possibility of embedding machine learning tools into experimental platforms to address key problems, including the characterization of the properties of quantum states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve resource-efficient and accurate characterization of the polarization state of a photon. The underlying reservoir dynamics through which such input state evolves is implemented using the coined quantum walk of high-dimensional photonic orbital angular momentum and performing projective measurements over a fixed basis. We demonstrate how the reconstruction of an unknown polarization state does not need a careful characterization of the measurement apparatus and is robust to experimental imperfections, thus representing a promising route for resource-economic state characterization.

Experimental Property Reconstruction in a Photonic Quantum Extreme Learning Machine / A. Suprano, D. Zia, L. Innocenti, S. Lorenzo, V. Cimini, T. Giordani, I. Palmisano, E. Polino, N. Spagnolo, F. Sciarrino, G.M. Palma, A. Ferraro, M. Paternostro. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 132:16(2024), pp. 1-6. [10.1103/PhysRevLett.132.160802]

Experimental Property Reconstruction in a Photonic Quantum Extreme Learning Machine

A. Ferraro
Penultimo
;
2024

Abstract

Recent developments have led to the possibility of embedding machine learning tools into experimental platforms to address key problems, including the characterization of the properties of quantum states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve resource-efficient and accurate characterization of the polarization state of a photon. The underlying reservoir dynamics through which such input state evolves is implemented using the coined quantum walk of high-dimensional photonic orbital angular momentum and performing projective measurements over a fixed basis. We demonstrate how the reconstruction of an unknown polarization state does not need a careful characterization of the measurement apparatus and is robust to experimental imperfections, thus representing a promising route for resource-economic state characterization.
Settore FIS/03 - Fisica della Materia
   Quantum Reservoir Computing (QuReCo)
   QuReCo
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022FEXLYB_001

   Testing the Large-Scale Limit of Quantum Mechanics
   TEQ
   European Commission
   Horizon 2020 Framework Programme
   766900

   Quantum Control of Gravity with Levitated Mechanics
   QuCoM
   European Commission
   Horizon Europe Framework Programme
   101046973

   QUantum advantage via non-linear BOSon Sampling
   QU-BOSS
   European Commission
   Horizon 2020 Framework Programme
   884676
2024
16-apr-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.132.160802.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2308.04543v1.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 4.44 MB
Formato Adobe PDF
4.44 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1089228
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact