Recent advances in artificial intelligence (AI) are radically changing how systems and applications are designed and developed. In this context, new requirements and regulations emerge, such as the AI Act, placing increasing focus on strict non-functional requirements, such as privacy and robustness, and how they are verified. Certification is considered the most suitable solution for non-functional verification of modern distributed systems, and is increasingly pushed forward in the verification of AI-based applications. In this paper, we present a novel dynamic malware detector driven by the requirements in the AI Act, which goes beyond standard support for high accuracy, and also considers privacy and robustness. Privacy aims to limit the need of malware detectors to examine the entire system in depth requiring administrator-level permissions; robustness refers to the ability to cope with malware mounting evasion attacks to escape detection. We then propose a certification scheme to evaluate non-functional properties of malware detectors, which is used to comparatively evaluate our malware detector and two representative deep-learning solutions in literature.
Certifying accuracy, privacy, and robustness of ML-based malware detection / N. Bena, M. Anisetti, G. Gianini, C.A. Ardagna. - In: SN COMPUTER SCIENCE. - ISSN 2662-995X. - 5:6(2024), pp. 710.1-710.17. [10.1007/s42979-024-03024-8]
Certifying accuracy, privacy, and robustness of ML-based malware detection
N. Bena
Primo
;M. AnisettiSecondo
;G. GianiniPenultimo
;C.A. ArdagnaCo-ultimo
2024
Abstract
Recent advances in artificial intelligence (AI) are radically changing how systems and applications are designed and developed. In this context, new requirements and regulations emerge, such as the AI Act, placing increasing focus on strict non-functional requirements, such as privacy and robustness, and how they are verified. Certification is considered the most suitable solution for non-functional verification of modern distributed systems, and is increasingly pushed forward in the verification of AI-based applications. In this paper, we present a novel dynamic malware detector driven by the requirements in the AI Act, which goes beyond standard support for high accuracy, and also considers privacy and robustness. Privacy aims to limit the need of malware detectors to examine the entire system in depth requiring administrator-level permissions; robustness refers to the ability to cope with malware mounting evasion attacks to escape detection. We then propose a certification scheme to evaluate non-functional properties of malware detectors, which is used to comparatively evaluate our malware detector and two representative deep-learning solutions in literature.File | Dimensione | Formato | |
---|---|---|---|
BAGA.SNCS2024.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.