The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure. At very high iron content the inner core is composed of magnetite more than ferrihydrite, and the shell of the protein is elastically deformed by the iron crystal growth in an ellipsoidal arrangement. The application of an external radiofrequency (RF) magnetic field affected ferritins at low iron loading factors. Notably the RF modified the iron disposition towards a more dispersed arrangement. The structural characterization of the ferritin at different LFs and in presence of magnetic fields provides useful insights into their physiological behaviour and can help in the design and fine-tuning of ferritin-based nanosystems for biotechnological applications.

Ferritin at different iron loading: From biological to nanotechnological applications / C. Ricci, G. Abbandonato, M. Giannangeli, L. Matthews, L. Almásy, B. Sartori, A. Podestà, A. Caselli, A. Boffi, G. Thiel, E. DEL FAVERO, A. Moroni. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 276:Pt 2(2024), pp. 133812.1-133812.11. [10.1016/j.ijbiomac.2024.133812]

Ferritin at different iron loading: From biological to nanotechnological applications

C. Ricci
Primo
;
G. Abbandonato;M. Giannangeli;A. Podestà;A. Caselli;E. DEL FAVERO
Penultimo
;
A. Moroni
Ultimo
2024

Abstract

The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure. At very high iron content the inner core is composed of magnetite more than ferrihydrite, and the shell of the protein is elastically deformed by the iron crystal growth in an ellipsoidal arrangement. The application of an external radiofrequency (RF) magnetic field affected ferritins at low iron loading factors. Notably the RF modified the iron disposition towards a more dispersed arrangement. The structural characterization of the ferritin at different LFs and in presence of magnetic fields provides useful insights into their physiological behaviour and can help in the design and fine-tuning of ferritin-based nanosystems for biotechnological applications.
Ferritin; Iron loading; Magnetogenetics
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
   Noninvasive Manipulation of Gating in Ion Channels
   noMAGIC
   EUROPEAN COMMISSION
   H2020
   695078
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0141813024046178-main.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1085008
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact