The liquid-phase hydrogenation of muconic acid (MA) to produce bio-adipic acid (AdA) is a prominent environmentally friendly chemical process, that can be achieved through two distinct methodologies: catalytic direct hydrogenation using molecular hydrogen (H2 ), or catalytic transfer hydrogenation utilizing a hydrogen donor. In this study, both approaches were explored, with formic acid (FA) selected as the hydrogen source for the latter method. Palladium-based catalysts were chosen for these processes. Metal’s nanoparticles (NPs) were supported on high-temperature heat-treated carbon nanofibers (HHT-CNFs) due to their known ability to enhance the stability of this metal catalyst. To assess the impact of support functionalization on catalyst stability, the HHT-CNFs were further functionalized with phosphorus and oxygen to obtain HHT-P and HHT-O, respectively. In the hydrogenation reaction, catalysts supported on functionalized supports exhibited higher catalytic activity and stability compared to Pd/HHT, reaching an AdA yield of about 80% in less than 2 h in batch reactor. The hydrogen-transfer process also yielded promising results, particularly with the 1%Pd/HHT-P catalyst. This work highlights the efficacy of support functionalization in improving catalyst performance, particularly when formic acid is used as a safer and more costeffective hydrogen donor in the hydrogen-transfer process.
Effect of Support Functionalization on Catalytic Direct Hydrogenation and Catalytic Transfer Hydrogenation of Muconic Acid to Adipic Acid / E. Zanella, S. Franchi, N. Jabbarli, I. Barlocco, M. Stucchi, C. Pirola. - In: CATALYSTS. - ISSN 2073-4344. - 14:7(2024 Jul 19), pp. 465.1-465.16. [10.3390/catal14070465]
Effect of Support Functionalization on Catalytic Direct Hydrogenation and Catalytic Transfer Hydrogenation of Muconic Acid to Adipic Acid
E. Zanella
Primo
;N. Jabbarli;I. Barlocco;M. StucchiPenultimo
;C. PirolaUltimo
2024
Abstract
The liquid-phase hydrogenation of muconic acid (MA) to produce bio-adipic acid (AdA) is a prominent environmentally friendly chemical process, that can be achieved through two distinct methodologies: catalytic direct hydrogenation using molecular hydrogen (H2 ), or catalytic transfer hydrogenation utilizing a hydrogen donor. In this study, both approaches were explored, with formic acid (FA) selected as the hydrogen source for the latter method. Palladium-based catalysts were chosen for these processes. Metal’s nanoparticles (NPs) were supported on high-temperature heat-treated carbon nanofibers (HHT-CNFs) due to their known ability to enhance the stability of this metal catalyst. To assess the impact of support functionalization on catalyst stability, the HHT-CNFs were further functionalized with phosphorus and oxygen to obtain HHT-P and HHT-O, respectively. In the hydrogenation reaction, catalysts supported on functionalized supports exhibited higher catalytic activity and stability compared to Pd/HHT, reaching an AdA yield of about 80% in less than 2 h in batch reactor. The hydrogen-transfer process also yielded promising results, particularly with the 1%Pd/HHT-P catalyst. This work highlights the efficacy of support functionalization in improving catalyst performance, particularly when formic acid is used as a safer and more costeffective hydrogen donor in the hydrogen-transfer process.File | Dimensione | Formato | |
---|---|---|---|
catalysts-14-00465-v2 (2).pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
3.29 MB
Formato
Adobe PDF
|
3.29 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.