Critical-sized mandibular bone defects, arising from, for example, resections after tumor surgeries, are currently treated with autogenous bone grafts. This treatment is considered very invasive and is associated with limitations such as morbidity and graft resorption. Tissue engineering approaches propose to use 3D scaffolds that combine structural features, biomaterial properties, cells, and biomolecules to create biomimetic constructs. However, mimicking the complex anatomy and composition of the mandible poses a challenge in scaffold design. In our study, we evaluated the dual effect of complex pore geometry and material composition on the osteogenic potential of 3D printed scaffolds. The scaffolds were made of polycaprolactone (PCL) alone (TCP0), or with a high concentration of β-tricalcium phosphate (β-TCP) up to 40% w/w (TCP40), with two complex pore geometries, namely a star- (S) and a diamond-like (D) shape. Scanning electron microscopy and microcomputed tomography images confirmed high fidelity during the printing process. The D-scaffolds displayed higher compressive moduli than the corresponding S-scaffolds. TCP40 scaffolds in simulated body fluid showed deposition of minerals on the surface after 28 days. Subsequently, we assessed the differentiation of seeded bone marrow-derived human mesenchymal stromal cells (hMSCs) over 28 days. The early expression of RUNX2 in the cell nuclei confirmed the commitment toward an osteogenic phenotype. Moreover, alkaline phosphatase (ALP) activity and collagen deposition displayed an increasing trend in the D-scaffolds. Collagen type I was mainly present in the deposited extracellular matrix (ECM), confirming deposition of bone matrix. Finally, Alizarin Red staining showed successful mineralization on all the TCP40 samples, with higher values for the S-shaped scaffolds. Taken together, our study demonstrated that the complex pore architectures of scaffolds comprised TCP40 stimulated osteogenic differentiation and mineralization of hMSCs in vitro. Future research will aim to validate these findings in vivo.

Polycaprolactone/β-Tricalcium Phosphate Composite Scaffolds with Advanced Pore Geometries Promote Human Mesenchymal Stromal Cells’ Osteogenic Differentiation / S. Dalfino, E. Olaret, M. Piazzoni, P. Savadori, I. Stancu, G. Tartaglia, C. Dolci, L. Moroni. - In: TISSUE ENGINEERING, PART A. - ISSN 1937-3341. - 31:1-2(2025 Jan), pp. 13-28. [10.1089/ten.tea.2024.0030]

Polycaprolactone/β-Tricalcium Phosphate Composite Scaffolds with Advanced Pore Geometries Promote Human Mesenchymal Stromal Cells’ Osteogenic Differentiation

S. Dalfino
Primo
;
M. Piazzoni;P. Savadori;G. Tartaglia;C. Dolci
Penultimo
;
2025

Abstract

Critical-sized mandibular bone defects, arising from, for example, resections after tumor surgeries, are currently treated with autogenous bone grafts. This treatment is considered very invasive and is associated with limitations such as morbidity and graft resorption. Tissue engineering approaches propose to use 3D scaffolds that combine structural features, biomaterial properties, cells, and biomolecules to create biomimetic constructs. However, mimicking the complex anatomy and composition of the mandible poses a challenge in scaffold design. In our study, we evaluated the dual effect of complex pore geometry and material composition on the osteogenic potential of 3D printed scaffolds. The scaffolds were made of polycaprolactone (PCL) alone (TCP0), or with a high concentration of β-tricalcium phosphate (β-TCP) up to 40% w/w (TCP40), with two complex pore geometries, namely a star- (S) and a diamond-like (D) shape. Scanning electron microscopy and microcomputed tomography images confirmed high fidelity during the printing process. The D-scaffolds displayed higher compressive moduli than the corresponding S-scaffolds. TCP40 scaffolds in simulated body fluid showed deposition of minerals on the surface after 28 days. Subsequently, we assessed the differentiation of seeded bone marrow-derived human mesenchymal stromal cells (hMSCs) over 28 days. The early expression of RUNX2 in the cell nuclei confirmed the commitment toward an osteogenic phenotype. Moreover, alkaline phosphatase (ALP) activity and collagen deposition displayed an increasing trend in the D-scaffolds. Collagen type I was mainly present in the deposited extracellular matrix (ECM), confirming deposition of bone matrix. Finally, Alizarin Red staining showed successful mineralization on all the TCP40 samples, with higher values for the S-shaped scaffolds. Taken together, our study demonstrated that the complex pore architectures of scaffolds comprised TCP40 stimulated osteogenic differentiation and mineralization of hMSCs in vitro. Future research will aim to validate these findings in vivo.
additive manufacturing; bone tissue engineering; composite scaffolds; hMSC differentiation; pore shape
Settore MED/29 - Chirurgia Maxillofacciale
Settore BIOS-12/A - Anatomia umana
Settore MEDS-16/A - Malattie odontostomatologiche
Settore MEDS-15/B - Chirurgia maxillo-facciale
Settore IBIO-01/A - Bioingegneria
gen-2025
30-apr-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
2025_Polycaprolactone-β-tricalcium-phosphate-composite-scaffolds_TE-A.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2434_1076956_PLC_Post_Print.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1076956
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact