In this paper we propose a semi-Bayesian approach for the analysis of categorical data with an ordered outcome when a scaling component is considered. A recursive partitioning method yielding two trees –one for the location and one for the scaling– is used for selecting covariates, then a Bayesian approach for model estima- tion is implemented and an MCMC sampler is used to obtain posterior estimates. An analysis on risk perception concerning Covid-19 pandemic is carried out to assess the performance of the method

A semi-bayesian approach for the analysis of scale effects in ordinal regression models / I. Maria, C. Tarantola (PROCEEDINGS E REPORT). - In: Cladag 2021 / [a cura di] G.C. Porzio, C. Rampichini, C. Bocci. - [s.l] : Firenze University Press, 2021. - ISBN 978-88-5518-340-6. - pp. 124-126 (( Intervento presentato al 13. convegno Cladag tenutosi a Firenze nel 2021.

A semi-bayesian approach for the analysis of scale effects in ordinal regression models

C. Tarantola
2021

Abstract

In this paper we propose a semi-Bayesian approach for the analysis of categorical data with an ordered outcome when a scaling component is considered. A recursive partitioning method yielding two trees –one for the location and one for the scaling– is used for selecting covariates, then a Bayesian approach for model estima- tion is implemented and an MCMC sampler is used to obtain posterior estimates. An analysis on risk perception concerning Covid-19 pandemic is carried out to assess the performance of the method
Heterogeneity of variances; ordinal responses; scale effects; tree structure; MCMC
Settore SECS-S/01 - Statistica
2021
https://books.fupress.com/catalogue/cladag-2021-book-of-abstracts-and-short-papers/7254
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Cladag_2021_conference_Iannario_Tarantola.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 918.09 kB
Formato Adobe PDF
918.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1074691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact