This paper deals with the Bayesian analysis of discrete bi-directed graphical models. A missing edge in the graph denotes marginal independence between the corresponding variables. The augmented DAG representation of the model is exploited. The augmented model is parameterised in terms of a minimal set of marginal and conditional probability parameters. Compatible priors based on product of Dirichlet Distributions are applied. The prior parameters are specified via a power prior approach. The posterior distributions of the marginal log-linear parameters are obtained using Monte Carlo simulations.

Bayesian Analysis of discrete Bi-directed Graphical Models via Augmented DAG Representation / C. Tarantola, I. Ntzoufras - In: Advances in Latent Variables / [a cura di] E. Brentari, M. Carpita. - Milano : Vita e Pensiero, 2013. - ISBN 9788834325568. (( convegno Advances in Latent Variables Methods, Models : and Applications tenutosi a Brescia nel 2013.

Bayesian Analysis of discrete Bi-directed Graphical Models via Augmented DAG Representation

C. Tarantola;
2013

Abstract

This paper deals with the Bayesian analysis of discrete bi-directed graphical models. A missing edge in the graph denotes marginal independence between the corresponding variables. The augmented DAG representation of the model is exploited. The augmented model is parameterised in terms of a minimal set of marginal and conditional probability parameters. Compatible priors based on product of Dirichlet Distributions are applied. The prior parameters are specified via a power prior approach. The posterior distributions of the marginal log-linear parameters are obtained using Monte Carlo simulations.
Settore SECS-S/01 - Statistica
2013
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
sis2013.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1074608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact