We focus on robust Bayesian estimation of the systematic risk of an asset in presence of outlying points. We assume that the returns follow independent normal distributions with a product partition structure on the parameters of interest. A Bayesian decision theoretical approach is used to identify the partition that best separates standard and atypical data points. We apply a nonsmooth optimization algorithm to minimize the expected value of a given loss function. The methodology is illustrated with reference to the IPSA stock market index and the MIBTEL one.

Optimal clustering in Bayesian Capital Asset Pricing Model / M.E. De Giuli, C. Tarantola, P. Uberti. - [s.l] : University of Pavia, 2007. (QUADERNI DEL DIPARTIMENTO)

Optimal clustering in Bayesian Capital Asset Pricing Model

C. Tarantola
Penultimo
;
2007

Abstract

We focus on robust Bayesian estimation of the systematic risk of an asset in presence of outlying points. We assume that the returns follow independent normal distributions with a product partition structure on the parameters of interest. A Bayesian decision theoretical approach is used to identify the partition that best separates standard and atypical data points. We apply a nonsmooth optimization algorithm to minimize the expected value of a given loss function. The methodology is illustrated with reference to the IPSA stock market index and the MIBTEL one.
2007
Settore SECS-S/01 - Statistica
Settore STAT-01/A - Statistica
Working Paper
Optimal clustering in Bayesian Capital Asset Pricing Model / M.E. De Giuli, C. Tarantola, P. Uberti. - [s.l] : University of Pavia, 2007. (QUADERNI DEL DIPARTIMENTO)
File in questo prodotto:
File Dimensione Formato  
q197_DeGiuli_Tarantola_Uberti.pdf

accesso aperto

Tipologia: Altro
Dimensione 169.32 kB
Formato Adobe PDF
169.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1074129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact