We propose a new class of prior distributions for the analysis of discrete graphical models. Such a class, obtained following a conditional approach, generalizes the hyper Dirichlet distributions of Dawid and Lauritzen (1993), since it can be extended to non decomposable graphical models. The two classes are compared in terms of model selection, with an application to a medical data-set illustrating the performance of the two resulting procedures. The proposed class turns out to select simpler, more parsimonious structures.

Global prior distributions for the analysis of discrete graphical models / P.S. Giudici, C. Tarantola. - In: JOURNAL OF THE ITALIAN STATISTICAL SOCIETY. - ISSN 1121-9130. - 5:1(1996 Apr), pp. 129-147. [10.1007/BF02589585]

Global prior distributions for the analysis of discrete graphical models

C. Tarantola
Ultimo
1996

Abstract

We propose a new class of prior distributions for the analysis of discrete graphical models. Such a class, obtained following a conditional approach, generalizes the hyper Dirichlet distributions of Dawid and Lauritzen (1993), since it can be extended to non decomposable graphical models. The two classes are compared in terms of model selection, with an application to a medical data-set illustrating the performance of the two resulting procedures. The proposed class turns out to select simpler, more parsimonious structures.
hyper-dirichlet; model selection; Bayesian;
Settore SECS-S/01 - Statistica
Settore STAT-01/A - Statistica
apr-1996
Article (author)
File in questo prodotto:
File Dimensione Formato  
giudici_tarantola-1996.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1073608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact