Melanoma is an aggressive form of skin cancer with elevated propensity to metastasize. One of the major critical issues in the treatment of oncological patients is represented by the development of toxicity and resistance to the available therapies. Great progress has been made in the field of nanotechnologies to limit the unwanted effects of anti-cancer treatments. We explored the potential of creating oil-in-water nanoemulsions composed of oleic acid, as a bioactive carrier for lipophilic drug delivery. This bioactive nanoemulsion was loaded with Curcumin, a natural fluorescent lipophilic compound, used as a model drug to evaluate nanoemulsion capability to: i) encapsulate the lipophilic moiety; ii) interact with the specific cells, and iii) improve the efficacy of the loaded model drug compared to the free one. Therefore, we evaluated the physical-chemical features of Curcumin-loaded nanoemulsions, confirming their pH sensibility and their stability over time. Moreover, the nanoemulsions were able to preserve the loaded Curcumin by degradation/destabilization phenomena. Finally, we verified some of the biological functions of Curcumin delivered by nanoemulsions in the B16F10 melanoma cell line. We obtained evidence of the biological action of Curcumin, suggesting oleic-based nanoemulsions as an efficient nanocarrier for lipophilic drug delivery.

Bioactive pH-sensitive nanoemulsion in melanoma cell lines / J. Forte, M. Gioia Fabiano, M. Grazia Ammendolia, R. Puglisi, F. Rinaldi, C. Ricci, E. Del Favero, M. Carafa, G. Mattia, C. Marianecci. - In: INTERNATIONAL JOURNAL OF PHARMACEUTICS. - ISSN 0378-5173. - 661:(2024 Aug 15), pp. 124380.1-124380.11. [10.1016/j.ijpharm.2024.124380]

Bioactive pH-sensitive nanoemulsion in melanoma cell lines

C. Ricci;E. Del Favero;
2024

Abstract

Melanoma is an aggressive form of skin cancer with elevated propensity to metastasize. One of the major critical issues in the treatment of oncological patients is represented by the development of toxicity and resistance to the available therapies. Great progress has been made in the field of nanotechnologies to limit the unwanted effects of anti-cancer treatments. We explored the potential of creating oil-in-water nanoemulsions composed of oleic acid, as a bioactive carrier for lipophilic drug delivery. This bioactive nanoemulsion was loaded with Curcumin, a natural fluorescent lipophilic compound, used as a model drug to evaluate nanoemulsion capability to: i) encapsulate the lipophilic moiety; ii) interact with the specific cells, and iii) improve the efficacy of the loaded model drug compared to the free one. Therefore, we evaluated the physical-chemical features of Curcumin-loaded nanoemulsions, confirming their pH sensibility and their stability over time. Moreover, the nanoemulsions were able to preserve the loaded Curcumin by degradation/destabilization phenomena. Finally, we verified some of the biological functions of Curcumin delivered by nanoemulsions in the B16F10 melanoma cell line. We obtained evidence of the biological action of Curcumin, suggesting oleic-based nanoemulsions as an efficient nanocarrier for lipophilic drug delivery.
Curcumin; Drug delivery; Melanoma; Metastatization; Nanoemulsions; pH sensitivity;
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore CHIM/09 - Farmaceutico Tecnologico Applicativo
15-ago-2024
29-giu-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378517324006148-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1071929
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact