When pandemics like COVID-19 spread around the world, the rapidly evolving situation compels officials and executives to take prompt decisions and adapt policies depending on the current state of the disease. In this context, it is crucial for policymakers to always have a firm grasp on what is the current state of the pandemic, and envision how the number of infections and possible deaths is going to evolve shortly. However, as in many other situations involving compulsory registration of sensitive data from multiple collectors, cases might be reported with errors, often with delays deferring an up-to-date view of the state of things. Errors in collecting new cases affect the overall mortality, resulting in excess deaths reported by official statistics only months later. In this paper, we provide tools for evaluating the quality of pandemic mortality data. We accomplish this through a Bayesian approach accounting for the excess mortality pandemics might bring with respect to the normal level of mortality in the population
Pandemic data quality modelling: a Bayesian approach in the Italian case / L. Ferrari, G. Manzi, A. Micheletti, F. Nicolussi, S. Salini. - In: QUALITY AND QUANTITY. - ISSN 1573-7845. - (2024), pp. 1-23. [Epub ahead of print] [10.1007/s11135-024-01913-x]
Pandemic data quality modelling: a Bayesian approach in the Italian case
G. Manzi
Secondo
;A. Micheletti;S. SaliniUltimo
2024
Abstract
When pandemics like COVID-19 spread around the world, the rapidly evolving situation compels officials and executives to take prompt decisions and adapt policies depending on the current state of the disease. In this context, it is crucial for policymakers to always have a firm grasp on what is the current state of the pandemic, and envision how the number of infections and possible deaths is going to evolve shortly. However, as in many other situations involving compulsory registration of sensitive data from multiple collectors, cases might be reported with errors, often with delays deferring an up-to-date view of the state of things. Errors in collecting new cases affect the overall mortality, resulting in excess deaths reported by official statistics only months later. In this paper, we provide tools for evaluating the quality of pandemic mortality data. We accomplish this through a Bayesian approach accounting for the excess mortality pandemics might bring with respect to the normal level of mortality in the populationFile | Dimensione | Formato | |
---|---|---|---|
Ferrari et al 2024.pdf
accesso aperto
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.