In a network of reinforced stochastic processes, for certain values of the parameters, all the agents’ inclinations synchronize and converge almost surely toward a certain random variable. The present work aims at clarifying when the agents can asymptotically polarize, i.e. when the common limit inclination can take the extreme values, 0 or 1, with probability zero, strictly positive, or equal to one. Moreover, we present a suitable technique to estimate this probability that, along with the theoretical results, has been framed in the more general setting of a class of martingales taking values in and following a specific dynamics.
Networks of reinforced stochastic processes: Probability of asymptotic polarization and related general results / G. Aletti, I. Crimaldi, A. Ghiglietti. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 174:(2024), pp. 104376.1-104376.19. [10.1016/j.spa.2024.104376]
Networks of reinforced stochastic processes: Probability of asymptotic polarization and related general results
G. AlettiPrimo
;A. Ghiglietti
Ultimo
2024
Abstract
In a network of reinforced stochastic processes, for certain values of the parameters, all the agents’ inclinations synchronize and converge almost surely toward a certain random variable. The present work aims at clarifying when the agents can asymptotically polarize, i.e. when the common limit inclination can take the extreme values, 0 or 1, with probability zero, strictly positive, or equal to one. Moreover, we present a suitable technique to estimate this probability that, along with the theoretical results, has been framed in the more general setting of a class of martingales taking values in and following a specific dynamics.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0304414924000826-main.pdf
accesso riservato
Descrizione: Articolo pubblicato
Tipologia:
Publisher's version/PDF
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2212.07687v3.pdf
accesso aperto
Descrizione: Arxiv version
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
629.14 kB
Formato
Adobe PDF
|
629.14 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.