Kilovoltage rotational radiotherapy of breast cancer has been proposed as an alternative procedure to the conventional breast radiotherapy with 6 MeV photon beams. The use of orthovoltage X-ray tubes rotating around the breast, instead of conventional medical linear accelerators, would allow for significant reduction of acquisition and management costs. However, the employment of an X-ray tube limits the maximum available photon flux: a synchrotron radiation source could provide a high dose rate, but its clinical use is prevented by the size of such a source. In this work, we propose the use of the BriXS twin Compton pulsed X-ray source as a compact alternative to the synchrotron radiation source, for kilovoltage radiotherapy of breast cancer. This proposed source presents a footprint of 40 m × 20 m, and the X-ray spectrum presents a mean energy of 88 keV with a suitable photon flux. The dose distribution in a simulated radiotherapy session was computed via a Monte Carlo software based on the Geant4 simulation toolkit. The study focused on the skin dose ratio, i.e. the percent ratio between the dose to the skin and that to the tumor volume in the modelled breast. A low skin dose allows for a suitable sparing of skin tissue during radiotherapy. For a cylindrical model breast with a diameter of 140 mm embedding a spherical simulated lesion with a diameter of 10 mm placed at the rotational axis of the cylinder, the calculated skin-to-tumor dose ratio was as low as 7%.

Kilovoltage rotational radiotherapy of breast cancer with the BriXS source / A. Sarno, G. Mettivier, P. Russo, I. Drebot, V. Petrillo, A. Bacci, S. Cialdi, P. Cardarelli, G. Paterno, A. Taibi, L. Serafini. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 15:5(2020 May 05), pp. C05012.1-C05012.9. (Intervento presentato al 15. convegno IPRD Topical Seminar on Innovative Particle and Radiation Detectors : October, 14 - 17 tenutosi a Siena nel 2019) [10.1088/1748-0221/15/05/C05012].

Kilovoltage rotational radiotherapy of breast cancer with the BriXS source

A. Sarno
Primo
;
V. Petrillo;S. Cialdi;L. Serafini
2020

Abstract

Kilovoltage rotational radiotherapy of breast cancer has been proposed as an alternative procedure to the conventional breast radiotherapy with 6 MeV photon beams. The use of orthovoltage X-ray tubes rotating around the breast, instead of conventional medical linear accelerators, would allow for significant reduction of acquisition and management costs. However, the employment of an X-ray tube limits the maximum available photon flux: a synchrotron radiation source could provide a high dose rate, but its clinical use is prevented by the size of such a source. In this work, we propose the use of the BriXS twin Compton pulsed X-ray source as a compact alternative to the synchrotron radiation source, for kilovoltage radiotherapy of breast cancer. This proposed source presents a footprint of 40 m × 20 m, and the X-ray spectrum presents a mean energy of 88 keV with a suitable photon flux. The dose distribution in a simulated radiotherapy session was computed via a Monte Carlo software based on the Geant4 simulation toolkit. The study focused on the skin dose ratio, i.e. the percent ratio between the dose to the skin and that to the tumor volume in the modelled breast. A low skin dose allows for a suitable sparing of skin tissue during radiotherapy. For a cylindrical model breast with a diameter of 140 mm embedding a spherical simulated lesion with a diameter of 10 mm placed at the rotational axis of the cylinder, the calculated skin-to-tumor dose ratio was as low as 7%.
Accelerator Applications; Instrumentation for gamma-electron therapy; Radiotherapy concepts; X-ray generators and sources
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
5-mag-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Sarno_2020_J._Inst._15_C05012.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1069911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact