African trypanosomiases and leishmaniases are significant neglected tropical diseases (NTDs) that affect millions globally, with severe health and socio-economic consequences, especially in endemic regions. Understanding the pathogenesis and dissemination of Trypanosoma brucei and Leishmania spp. parasites within their hosts is pivotal for the development of effective interventions. Whole-body bioluminescence and fluorescence imaging systems (BLI and FLI, respectively), are powerful tools to visualize and quantify the progression and distribution of these parasites in real-time within live animal models. By combining this technology with the engineering of stable T. brucei and Leishmania spp. strains expressing luciferase and/or fluorescent proteins, crucial aspects of the infection process including the parasites' homing, the infection dynamics, the tissue tropism, or the efficacy of experimental treatments and vaccines can be deeply investigated. This methodology allows for enhanced sensitivity and resolution, elucidating previously unrecognized infection niches and dynamics. Importantly, whole-body in vivo imaging is non-invasive, enabling for longitudinal studies during the course of an infection in the same animal, thereby aligning with the "3Rs" principle of animal research. Here, we detail a protocol for the generation of dual-reporter T. brucei and L. major, and their use to infect mice and follow the spatiotemporal dynamics of infection by in vivo imaging systems. Additionally, 3D micro-computed tomography (μCT) coupled to BLI in T. brucei-infected animals is applied to gain insights into the anatomical parasite distribution. This Chapter underscores the potential of these bioimaging modalities as indispensable tools in parasitology, paving the way for novel therapeutic strategies and deeper insights into host-parasite interactions.

Animal models of neglected parasitic diseases: In vivo multimodal imaging of experimental trypanosomatid infections / J.M.N. Tsagmo, B. Rotureau, E. Calvo Alvarez - In: Animal Models of Disease Part B / [a cura di] José Manuel Bravo-San Pedro, Fernando Aranda, Aitziber Buqué, Lorenzo Galluzzi. - [s.l] : Elsevier, 2024. - ISBN 9780443222405. - pp. 205-236 [10.1016/bs.mcb.2024.04.003]

Animal models of neglected parasitic diseases: In vivo multimodal imaging of experimental trypanosomatid infections

E. Calvo Alvarez
Ultimo
2024

Abstract

African trypanosomiases and leishmaniases are significant neglected tropical diseases (NTDs) that affect millions globally, with severe health and socio-economic consequences, especially in endemic regions. Understanding the pathogenesis and dissemination of Trypanosoma brucei and Leishmania spp. parasites within their hosts is pivotal for the development of effective interventions. Whole-body bioluminescence and fluorescence imaging systems (BLI and FLI, respectively), are powerful tools to visualize and quantify the progression and distribution of these parasites in real-time within live animal models. By combining this technology with the engineering of stable T. brucei and Leishmania spp. strains expressing luciferase and/or fluorescent proteins, crucial aspects of the infection process including the parasites' homing, the infection dynamics, the tissue tropism, or the efficacy of experimental treatments and vaccines can be deeply investigated. This methodology allows for enhanced sensitivity and resolution, elucidating previously unrecognized infection niches and dynamics. Importantly, whole-body in vivo imaging is non-invasive, enabling for longitudinal studies during the course of an infection in the same animal, thereby aligning with the "3Rs" principle of animal research. Here, we detail a protocol for the generation of dual-reporter T. brucei and L. major, and their use to infect mice and follow the spatiotemporal dynamics of infection by in vivo imaging systems. Additionally, 3D micro-computed tomography (μCT) coupled to BLI in T. brucei-infected animals is applied to gain insights into the anatomical parasite distribution. This Chapter underscores the potential of these bioimaging modalities as indispensable tools in parasitology, paving the way for novel therapeutic strategies and deeper insights into host-parasite interactions.
3D micro-computed tomography; animal models; bioluminescence; fluorescence; in vivo imaging; leishmania major; trypanosoma brucei; trypanosomatid parasites
Settore MED/04 - Patologia Generale
2024
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Tsagmo JMN et al., 2024_Methods Cell Biol.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 5.1 MB
Formato Adobe PDF
5.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1065589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact