Metallic ferromagnetic transition metal dichalcogenides have emerged as important building blocks for scalable magnetic and memory applications. Downscaling such systems to the ultrathin limit is critical to integrate them into technology. Here, we achieved layer-by-layer control over the transition metal dichalcogenide Cr1.6Te2 by using pulsed laser deposition, and we uncovered the minimum critical thickness above which room-temperature magnetic order is maintained. The electronic and magnetic structures are explored experimentally and theoretically, and it is shown that the films exhibit strong in-plane magnetic anisotropy as a consequence of large spin−orbit effects. Our study elucidates both magnetic and electronic properties of Cr1.6Te2 and corroborates the importance of intercalation to tune the magnetic properties of nanoscale materials’ architectures.

Uncovering the lowest thickness limit for room-temperature ferromagnet Cr1.6Te2 / S. Kumar Chaluvadi, S. Punathum Chalil, A. Jana, G. Vinai, F. Motti, J. Fujii, I. Vobornik, P. Torelli, G. Rossi, C. Bigi, R. Ciancio, P. Rajak, Y. Hwang, T. Olsen, P. Orgiani, F. Mazzola. - In: NANO LETTERS. - ISSN 1530-6984. - 24:25(2024), pp. 7601-7608. [10.1021/acs.nanolett.4c01005]

Uncovering the lowest thickness limit for room-temperature ferromagnet Cr1.6Te2

G. Rossi;
2024

Abstract

Metallic ferromagnetic transition metal dichalcogenides have emerged as important building blocks for scalable magnetic and memory applications. Downscaling such systems to the ultrathin limit is critical to integrate them into technology. Here, we achieved layer-by-layer control over the transition metal dichalcogenide Cr1.6Te2 by using pulsed laser deposition, and we uncovered the minimum critical thickness above which room-temperature magnetic order is maintained. The electronic and magnetic structures are explored experimentally and theoretically, and it is shown that the films exhibit strong in-plane magnetic anisotropy as a consequence of large spin−orbit effects. Our study elucidates both magnetic and electronic properties of Cr1.6Te2 and corroborates the importance of intercalation to tune the magnetic properties of nanoscale materials’ architectures.
two-dimensional magnetism; room-temperature ferromagnetism; chromium telluride; thin-film growth; pulsed laser deposition (PLD);
Settore FIS/03 - Fisica della Materia
2024
13-giu-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
chaluvadi-et-al-2024-uncovering-the-lowest-thickness-limit-for-room-temperature-ferromagnetism-of-cr1-6te2.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 6.24 MB
Formato Adobe PDF
6.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
nl4c01005_si_001.pdf

accesso aperto

Tipologia: Altro
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
2403.11977v2.pdf

embargo fino al 13/06/2025

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 17.03 MB
Formato Adobe PDF
17.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1063628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact