SoundOrbit is a novel input technique that uses motion correlation to control smart devices. The technique associates controls with specific orbital sounds, made of cyclically increasing/decreasing musical scales, and the user can activate a control by mimicking the corresponding sound by body motion. Unlike previous movement-correlation techniques based on visual displays, SoundOrbit operates independent of visual perception, enabling the development of cost-effective smart devices that do not require visual displays. We investigated SoundOrbit by conducting two user studies. The first study evaluated the effectiveness of binaural sound spatialization to create a distinct orbiting sound. In comparison to a cyclic musical scale that is fixed in the apparent auditory space, we found that spatial effects did not improve users’ ability to follow the sound orbit. In the second study, we aimed at determining the optimal system parameters, and discovered that users synchronize better with slower speeds. The technique was found to be feasible and reliable for one and two orbits simultaneously, each orbit using a distinct sound timbre, but not for three orbits due to a high error rate.
SoundOrbit: motion-correlation interaction with auditory orbital trajectories / A. Bellino, D. Rocchesso. - In: PERSONAL AND UBIQUITOUS COMPUTING. - ISSN 1617-4909. - (2024 Jun 15). [Epub ahead of print] [10.1007/s00779-024-01818-4]
SoundOrbit: motion-correlation interaction with auditory orbital trajectories
D. RocchessoSecondo
2024
Abstract
SoundOrbit is a novel input technique that uses motion correlation to control smart devices. The technique associates controls with specific orbital sounds, made of cyclically increasing/decreasing musical scales, and the user can activate a control by mimicking the corresponding sound by body motion. Unlike previous movement-correlation techniques based on visual displays, SoundOrbit operates independent of visual perception, enabling the development of cost-effective smart devices that do not require visual displays. We investigated SoundOrbit by conducting two user studies. The first study evaluated the effectiveness of binaural sound spatialization to create a distinct orbiting sound. In comparison to a cyclic musical scale that is fixed in the apparent auditory space, we found that spatial effects did not improve users’ ability to follow the sound orbit. In the second study, we aimed at determining the optimal system parameters, and discovered that users synchronize better with slower speeds. The technique was found to be feasible and reliable for one and two orbits simultaneously, each orbit using a distinct sound timbre, but not for three orbits due to a high error rate.File | Dimensione | Formato | |
---|---|---|---|
document.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.