We study the problem of regret minimization for a single bidder in a sequence of first-price auctions where the bidder discovers the item’s value only if the auction is won. Our main contribution is a complete characterization, up to logarithmic factors, of the minimax regret in terms of the auction’s transparency, which con- trols the amount of information on competing bids disclosed by the auctioneer at the end of each auction. Our results hold under different assumptions (stochastic, adversarial, and their smoothed variants) on the environment generating the bidder’s valuations and competing bids. These minimax rates reveal how the interplay between transparency and the nature of the environment affects how fast one can learn to bid optimally in first-price auctions.

The Role of Transparency in Repeated First-Price Auctions with Unknown Valuations / N. Cesa Bianchi, T. Cesari, R. Colomboni, F. Fusco, S. Leonardi - In: STOC 2024: Proceedings / [a cura di] B. Mohar, I. Shinkar, R. O'Donnell. - [s.l] : ACM, 2024. - ISBN 979-8-4007-0383-6. - pp. 225-236 (( Intervento presentato al 56. convegno Annual ACM Symposium on Theory of Computing tenutosi a Vancouver nel 2024 [10.1145/3618260.3649658].

The Role of Transparency in Repeated First-Price Auctions with Unknown Valuations

N. Cesa Bianchi;T. Cesari;R. Colomboni;
2024

Abstract

We study the problem of regret minimization for a single bidder in a sequence of first-price auctions where the bidder discovers the item’s value only if the auction is won. Our main contribution is a complete characterization, up to logarithmic factors, of the minimax regret in terms of the auction’s transparency, which con- trols the amount of information on competing bids disclosed by the auctioneer at the end of each auction. Our results hold under different assumptions (stochastic, adversarial, and their smoothed variants) on the environment generating the bidder’s valuations and competing bids. These minimax rates reveal how the interplay between transparency and the nature of the environment affects how fast one can learn to bid optimally in first-price auctions.
Online Learning; First-Price Auction; Transparency
Settore INF/01 - Informatica
   Learning in Markets and Society
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022EKNE5K_001

   European Lighthouse of AI for Sustainability (ELIAS)
   ELIAS
   EUROPEAN COMMISSION
   101120237
2024
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
3618260.3649658.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 322.23 kB
Formato Adobe PDF
322.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2307.09478v2.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 923.57 kB
Formato Adobe PDF
923.57 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1062548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact