We address the problem of indexing encrypted data outsourced to an external cloud server to support server-side execution of multi-attribute queries. Our approach partitions the dataset in groups with the same number of tuples, and associates all tuples in a group with the same combination of index values, so to guarantee protection against static inferences. Our indexing approach does not require any modifications to the server-side software stack, and requires limited storage at the client for query support. The experimental evaluation considers, for the storage of the encrypted and indexed dataset, both a relational database (PostgreSQL) and a key-value database (Redis). We carried out extensive experiments evaluating client-storage requirements and query performance. The experimental results confirm the efficiency of our solution. The proposal is supported by an open source implementation.

Multi-Dimensional Flat Indexing for Encrypted Data / S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi, P. Samarati. - In: IEEE TRANSACTIONS ON CLOUD COMPUTING. - ISSN 2168-7161. - (2024), pp. 1-14. [Epub ahead of print] [10.1109/TCC.2024.3408905]

Multi-Dimensional Flat Indexing for Encrypted Data

S. De Capitani di Vimercati
Primo
;
S. Foresti;P. Samarati
Ultimo
2024

Abstract

We address the problem of indexing encrypted data outsourced to an external cloud server to support server-side execution of multi-attribute queries. Our approach partitions the dataset in groups with the same number of tuples, and associates all tuples in a group with the same combination of index values, so to guarantee protection against static inferences. Our indexing approach does not require any modifications to the server-side software stack, and requires limited storage at the client for query support. The experimental evaluation considers, for the storage of the encrypted and indexed dataset, both a relational database (PostgreSQL) and a key-value database (Redis). We carried out extensive experiments evaluating client-storage requirements and query performance. The experimental results confirm the efficiency of our solution. The proposal is supported by an open source implementation.
Cloud computing; Data outsourcing; efficient query execution; encrypted data; Encryption; Indexing; multi-dimensional index; Outsourcing; Protection; Servers; Time-frequency analysis;
Settore INF/01 - Informatica
   Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
   EdgeAI
   MINISTERO DELLO SVILUPPO ECONOMICO
   101097300

   Green responsibLe privACy preservIng dAta operaTIONs
   GLACIATION
   EUROPEAN COMMISSION

   POLAR: POLicy specificAtion and enfoRcement for privacy-enhanced data management
   POLAR
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022LA8XBH_001

   SEcurity and RIghts in the CyberSpace (SERICS)
   SERICS
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   codice identificativo PE00000014
2024
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Multi-Dimensional_Flat_Indexing_for_Encrypted_Data.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1061488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact