Endothelial dysfunction is a crucial event in the early pathogenesis of cardiovascular diseases and is linked to magnesium (Mg) deficiency. Indeed, in endothelial cells, low Mg levels promote the acquisition of a pro-inflammatory and pro-atherogenic phenotype. This paper investigates the mechanisms by which Mg deficiency promotes oxidative stress and affects endothelial behavior in human umbilical vascular endothelial cells (HUVECs). Our data show that low Mg levels trigger oxidative stress initially by increasing NAPDH oxidase activity and then by upregulating the pro-oxidant thioredoxin-interacting protein TXNIP. The overproduction of reactive oxygen species (ROS) activates NF-kappa B, leading to its increased binding to the inducible nitric oxide synthase (iNOS) promoter, with the consequent increase in iNOS expression. The increased levels of nitric oxide (NO) generated by upregulated iNOS contribute to disrupting endothelial cell function by inhibiting growth and increasing permeability. In conclusion, we provide evidence that multiple mechanisms contribute to generate a pro-oxidant state under low-Mg conditions, ultimately affecting endothelial physiology. These data add support to the notion that adequate Mg levels play a significant role in preserving cardiovascular health and may suggest new approaches to prevent or manage cardiovascular diseases.

Impact of Inducible Nitric Oxide Synthase Activation on Endothelial Behavior under Magnesium Deficiency / G. Fedele, S. Castiglioni, V. Trapani, I. Zafferri, M. Bartolini, S.M. Casati, P. Ciuffreda, F.I. Wolf, J.A. Maier. - In: NUTRIENTS. - ISSN 2072-6643. - 16:10(2024 May 07), pp. 1406.1-1406.11. [10.3390/nu16101406]

Impact of Inducible Nitric Oxide Synthase Activation on Endothelial Behavior under Magnesium Deficiency

S. Castiglioni
Secondo
;
I. Zafferri;S.M. Casati;P. Ciuffreda;J.A. Maier
Ultimo
2024

Abstract

Endothelial dysfunction is a crucial event in the early pathogenesis of cardiovascular diseases and is linked to magnesium (Mg) deficiency. Indeed, in endothelial cells, low Mg levels promote the acquisition of a pro-inflammatory and pro-atherogenic phenotype. This paper investigates the mechanisms by which Mg deficiency promotes oxidative stress and affects endothelial behavior in human umbilical vascular endothelial cells (HUVECs). Our data show that low Mg levels trigger oxidative stress initially by increasing NAPDH oxidase activity and then by upregulating the pro-oxidant thioredoxin-interacting protein TXNIP. The overproduction of reactive oxygen species (ROS) activates NF-kappa B, leading to its increased binding to the inducible nitric oxide synthase (iNOS) promoter, with the consequent increase in iNOS expression. The increased levels of nitric oxide (NO) generated by upregulated iNOS contribute to disrupting endothelial cell function by inhibiting growth and increasing permeability. In conclusion, we provide evidence that multiple mechanisms contribute to generate a pro-oxidant state under low-Mg conditions, ultimately affecting endothelial physiology. These data add support to the notion that adequate Mg levels play a significant role in preserving cardiovascular health and may suggest new approaches to prevent or manage cardiovascular diseases.
HUVEC; ROS; magnesium; magnesium deficiency; nitric oxide;
Settore MED/04 - Patologia Generale
7-mag-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
nutrients-16-01406-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1059388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact