Radiomics extracts hundreds of features from medical images to quantitively characterize a region of interest (ROI). When applying radiomics, imbalanced or small dataset issues are commonly addressed using under or over-sampling, the latter being applied directly to the extracted features. Aim of this study is to propose a novel balancing and data augmentation technique by applying perturbations (erosion, dilation, contour randomization) to the ROI in cardiac computed tomography images. From the perturbed ROIs, radiomic features are extracted, thus creating additional samples. This approach was tested addressing the clinical problem of distinguishing cardiac amyloidosis (CA) from aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM). Twenty-one CA, thirty-two AS and twenty-one HCM patients were included in the study. From each original and perturbed ROI, 107 radiomic features were extracted. The CA-AS dataset was balanced using the perturbation-based method along with random over-sampling, adaptive synthetic (ADASYN) and the synthetic minority oversampling technique (SMOTE). The same methods were tested to perform data augmentation dealing with CA and HCM. Features were submitted to robustness, redundancy, and relevance analysis testing five feature selection methods (p-value, least absolute shrinkage and selection operator (LASSO), semi-supervised LASSO, principal component analysis (PCA), semi-supervised PCA). Support vector machine performed the classification tasks, and its performance were evaluated by means of a 10-fold cross-validation. The perturbation-based approach provided the best performances in terms of f1 score and balanced accuracy in both CA-AS (f1 score: 80%, AUC: 0.91) and CA-HCM (f1 score: 86%, AUC: 0.92) classifications. These results suggest that ROI perturbations represent a powerful approach to address both data balancing and augmentation issues.

A Novel Data Augmentation Method for Radiomics Analysis Using Image Perturbations / F. Lo Iacono, R. Maragna, G. Pontone, V.D.A. Corino. - In: JOURNAL OF IMAGING INFORMATICS IN MEDICINE. - ISSN 2948-2933. - 37:5(2024), pp. 2401-2414. [10.1007/s10278-024-01013-0]

A Novel Data Augmentation Method for Radiomics Analysis Using Image Perturbations

R. Maragna;G. Pontone;
2024

Abstract

Radiomics extracts hundreds of features from medical images to quantitively characterize a region of interest (ROI). When applying radiomics, imbalanced or small dataset issues are commonly addressed using under or over-sampling, the latter being applied directly to the extracted features. Aim of this study is to propose a novel balancing and data augmentation technique by applying perturbations (erosion, dilation, contour randomization) to the ROI in cardiac computed tomography images. From the perturbed ROIs, radiomic features are extracted, thus creating additional samples. This approach was tested addressing the clinical problem of distinguishing cardiac amyloidosis (CA) from aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM). Twenty-one CA, thirty-two AS and twenty-one HCM patients were included in the study. From each original and perturbed ROI, 107 radiomic features were extracted. The CA-AS dataset was balanced using the perturbation-based method along with random over-sampling, adaptive synthetic (ADASYN) and the synthetic minority oversampling technique (SMOTE). The same methods were tested to perform data augmentation dealing with CA and HCM. Features were submitted to robustness, redundancy, and relevance analysis testing five feature selection methods (p-value, least absolute shrinkage and selection operator (LASSO), semi-supervised LASSO, principal component analysis (PCA), semi-supervised PCA). Support vector machine performed the classification tasks, and its performance were evaluated by means of a 10-fold cross-validation. The perturbation-based approach provided the best performances in terms of f1 score and balanced accuracy in both CA-AS (f1 score: 80%, AUC: 0.91) and CA-HCM (f1 score: 86%, AUC: 0.92) classifications. These results suggest that ROI perturbations represent a powerful approach to address both data balancing and augmentation issues.
Cardiac amyloidosis; Data augmentation; Data balancing; ROI perturbation; Radiomics
Settore MED/11 - Malattie dell'Apparato Cardiovascolare
Settore MEDS-07/B - Malattie dell'apparato cardiovascolare
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1086989503.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1059028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex 9
social impact