We initiate the design and the analysis of stabilization-free Virtual Element Methods for the Poisson problem written in mixed form. A Virtual Element version of the lowest order Raviart-Thomas Finite Element is considered. To reduce the computational costs, a suitable projection on the gradients of harmonic polynomials is employed. A complete theoretical analysis of stability and convergence is developed in the case of quadrilateral meshes. Some numerical tests highlighting the actual behaviour of the scheme are also provided.
A lowest order stabilization-free mixed Virtual Element Method / A. Borio, C. Lovadina, F. Marcon, M. Visinoni. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - 160:(2024), pp. 161-170. [10.1016/j.camwa.2024.02.024]
A lowest order stabilization-free mixed Virtual Element Method
C. LovadinaSecondo
;M. Visinoni
Ultimo
2024
Abstract
We initiate the design and the analysis of stabilization-free Virtual Element Methods for the Poisson problem written in mixed form. A Virtual Element version of the lowest order Raviart-Thomas Finite Element is considered. To reduce the computational costs, a suitable projection on the gradients of harmonic polynomials is employed. A complete theoretical analysis of stability and convergence is developed in the case of quadrilateral meshes. Some numerical tests highlighting the actual behaviour of the scheme are also provided.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0898122124000695-main.pdf
accesso riservato
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2310.09260v1.pdf
accesso aperto
Descrizione: Article Pre-print
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.