We investigate a Schwarzschild metric exhibiting a signature change across the event horizon, which gives rise to what we term a Lorentzian-Euclidean black hole. The resulting geometry is regularized by employing the Hadamard partie finie technique, which allows us to prove that the metric represents a solution of vacuum Einstein equations. In this framework, we introduce the concept of atemporality as the dynamical mechanism responsible for the transition from a regime with a real-valued time variable to a new one featuring an imaginary time. We show that this mechanism prevents the occurrence of the singularity and, by means of the regularized Kretschmann invariant, we discuss in which terms atemporality can be considered as the characteristic feature of this black hole.

Avoiding singularities in Lorentzian-Euclidean black holes: The role of atemporality / S. Capozziello, S. De Bianchi, E. Battista. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 109:10(2024), pp. 104060.1-104060.18. [10.1103/physrevd.109.104060]

Avoiding singularities in Lorentzian-Euclidean black holes: The role of atemporality

S. De Bianchi
Secondo
;
2024

Abstract

We investigate a Schwarzschild metric exhibiting a signature change across the event horizon, which gives rise to what we term a Lorentzian-Euclidean black hole. The resulting geometry is regularized by employing the Hadamard partie finie technique, which allows us to prove that the metric represents a solution of vacuum Einstein equations. In this framework, we introduce the concept of atemporality as the dynamical mechanism responsible for the transition from a regime with a real-valued time variable to a new one featuring an imaginary time. We show that this mechanism prevents the occurrence of the singularity and, by means of the regularized Kretschmann invariant, we discuss in which terms atemporality can be considered as the characteristic feature of this black hole.
Settore M-FIL/02 - Logica e Filosofia della Scienza
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
https:arxiv.org:pdf:2404.pdf

accesso aperto

Descrizione: Article
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 996.13 kB
Formato Adobe PDF
996.13 kB Adobe PDF Visualizza/Apri
PhysRevD.109.104060.pdf

accesso riservato

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 530.55 kB
Formato Adobe PDF
530.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1052808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact