Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune -competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro -invasive phenotype, favoring transforming growth factor 8 (TGF-8), interleukin-23 (IL -23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL -17, SOCS2, and TGF-8 pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro -tumoral and immune regulatory capacities in AML blasts.
ZEB1 shapes AML immunological niches, suppressing CD8 T cell activity while fostering Th17 cell expansion / B. Bassani, G. Simonetti, V. Cancila, A. Fiorino, M. Ciciarello, A. Piva, A.M. Khorasani, C. Chiodoni, D. Lecis, A. Gulino, E. Fonzi, L. Botti, P. Portararo, M. Costanza, M. Brambilla, G. Colombo, J. Schwaller, A. Tzankov, M. Ponzoni, F. Ciceri, N. Bolli, A. Curti, C. Tripodo, M.P. Colombo, S. Sangaletti. - In: CELL REPORTS. - ISSN 2211-1247. - 43:2(2024 Feb 27), pp. 113794.1-113794.22. [10.1016/j.celrep.2024.113794]
ZEB1 shapes AML immunological niches, suppressing CD8 T cell activity while fostering Th17 cell expansion
A. Piva;N. Bolli;C. Tripodo;
2024
Abstract
Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune -competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro -invasive phenotype, favoring transforming growth factor 8 (TGF-8), interleukin-23 (IL -23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL -17, SOCS2, and TGF-8 pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro -tumoral and immune regulatory capacities in AML blasts.File | Dimensione | Formato | |
---|---|---|---|
PIIS2211124724001220.pdf
accesso aperto
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
5.75 MB
Formato
Adobe PDF
|
5.75 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.