Motivated by the proliferation of extensive macroeconomic and health datasets necessitating accurate forecasts, a novel approach is introduced to address Vector Autoregressive (VAR) models. This approach employs the global-local shrinkage-Wishart prior. Unlike conventional VAR models, where degrees of freedom are predetermined to be equivalent to the size of the variable plus one or equal to zero, the proposed method integrates a hyperprior for the degrees of freedom to account for the uncertainty in the parameter values. Specifically, a loss-based prior is derived to leverage information regarding the data-inherent degrees of freedom. The efficacy of the proposed prior is demonstrated in a multivariate setting both for forecasting macroeconomic data, and Dengue infection data

Loss-based prior for the degrees of freedom of the Wishart distribution / L. Rossini, C. Villa, S. Prevenas, R. Mccrea. - In: ECONOMETRICS AND STATISTICS. - ISSN 2452-3062. - (2024), pp. 1-17. [Epub ahead of print] [10.1016/j.ecosta.2024.04.001]

Loss-based prior for the degrees of freedom of the Wishart distribution

L. Rossini
Primo
;
2024

Abstract

Motivated by the proliferation of extensive macroeconomic and health datasets necessitating accurate forecasts, a novel approach is introduced to address Vector Autoregressive (VAR) models. This approach employs the global-local shrinkage-Wishart prior. Unlike conventional VAR models, where degrees of freedom are predetermined to be equivalent to the size of the variable plus one or equal to zero, the proposed method integrates a hyperprior for the degrees of freedom to account for the uncertainty in the parameter values. Specifically, a loss-based prior is derived to leverage information regarding the data-inherent degrees of freedom. The efficacy of the proposed prior is demonstrated in a multivariate setting both for forecasting macroeconomic data, and Dengue infection data
Forecasting; Global-local shrinkage prior; Loss-based prior; Macroeconomic data; Vector autoregressive models;
Settore SECS-S/01 - Statistica
Settore SECS-S/03 - Statistica Economica
Settore SECS-P/05 - Econometria
Settore STAT-01/A - Statistica
Settore STAT-02/A - Statistica economica
Settore ECON-05/A - Econometria
   Assegnazione Dipartimenti di Eccellenza 2023-2027 - Dipartimento di ECONOMIA, MANAGEMENT E METODI QUANTITATIVI
   DECC23_006
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
2024
10-apr-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2452306224000315-main.pdf

accesso aperto

Descrizione: online first
Tipologia: Publisher's version/PDF
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1048736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact