Although behavioural defensive responses have been recorded several times in both labo- ratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct beha- vioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairo- mones. We expected chronic treatments to influence the basal neuronal activity of the tad- poles’ mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the num- ber of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conduc- tances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native preda- tors is due to the non-recognition of their olfactory cues.

Predation cues induce predator specific changes in olfactory neurons encoding defensive responses in agile frog tadpoles / A. Gazzola, D. Ratto, F. Perrucci, A. Occhinegro, R. Leone, F. Giammello, A. Balestrieri, D. Pellitteri-Rosa, P. Rossi, F. Brandalise. - In: PLOS ONE. - ISSN 1932-6203. - 19:5(2024), pp. 1-19. [10.1371/journal.pone.0302728]

Predation cues induce predator specific changes in olfactory neurons encoding defensive responses in agile frog tadpoles

A. Balestrieri;F. Brandalise
Co-ultimo
2024

Abstract

Although behavioural defensive responses have been recorded several times in both labo- ratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct beha- vioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairo- mones. We expected chronic treatments to influence the basal neuronal activity of the tad- poles’ mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the num- ber of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conduc- tances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native preda- tors is due to the non-recognition of their olfactory cues.
Settore BIO/09 - Fisiologia
2024
2-mag-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
journal.pone.0302728 (3).pdf

accesso aperto

Descrizione: Research Article
Tipologia: Publisher's version/PDF
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1048248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact