Alzheimer's disease is a chronic neurodegenerative disease characterized by the accumulation of pathological aggregates of amyloid beta peptide. Many efforts have been focused on understanding peptide aggregation pathways and on identification of molecules able to inhibit aggregation in order to find an effective therapy. As a result, interest in neuroprotective proteins, such as molecular chaperones, has increased as their normal function is to assist in protein folding or to facilitate the disaggregation and/or clearance of abnormal aggregate proteins. Using biophysical techniques, we evaluated the effects of two chaperones, human Hsp60 and bacterial GroEL, on the fibrillogenesis of Aβ1-42. Both chaperonins interfere with Aβ1-42 aggregation, but the effect of Hsp60 is more significant and correlates with its more pronounced flexibility and stronger interaction with ANS, an indicator of hydrophobic regions. Dose-dependent ThT fluorescence kinetics and SAXS experiments reveal that Hsp60 does not change the nature of the molecular processes stochastically leading to the formation of seeds, but strongly delays them by recognition of hydrophobic sites of some peptide species crucial for triggering amyloid formation. Hsp60 reduces the initial chaotic heterogeneity of Aβ1-42 sample at high concentration regimes. The understanding of chaperone action in counteracting pathological aggregation could be a starting point for potential new therapeutic strategies against neurodegenerative diseases.

Inhibition of Aβ1-42 Fibrillation by Chaperonins: Human Hsp60 Is a Stronger Inhibitor than Its Bacterial Homologue GroEL / S. Vilasi, R. Carrotta, C. Ricci, G.C. Rappa, F. Librizzi, V. Martorana, M.G. Ortore, M.R. Mangione. - In: ACS CHEMICAL NEUROSCIENCE. - ISSN 1948-7193. - 10:8(2019), pp. 3565-3574. [10.1021/acschemneuro.9b00183]

Inhibition of Aβ1-42 Fibrillation by Chaperonins: Human Hsp60 Is a Stronger Inhibitor than Its Bacterial Homologue GroEL

C. Ricci;
2019

Abstract

Alzheimer's disease is a chronic neurodegenerative disease characterized by the accumulation of pathological aggregates of amyloid beta peptide. Many efforts have been focused on understanding peptide aggregation pathways and on identification of molecules able to inhibit aggregation in order to find an effective therapy. As a result, interest in neuroprotective proteins, such as molecular chaperones, has increased as their normal function is to assist in protein folding or to facilitate the disaggregation and/or clearance of abnormal aggregate proteins. Using biophysical techniques, we evaluated the effects of two chaperones, human Hsp60 and bacterial GroEL, on the fibrillogenesis of Aβ1-42. Both chaperonins interfere with Aβ1-42 aggregation, but the effect of Hsp60 is more significant and correlates with its more pronounced flexibility and stronger interaction with ANS, an indicator of hydrophobic regions. Dose-dependent ThT fluorescence kinetics and SAXS experiments reveal that Hsp60 does not change the nature of the molecular processes stochastically leading to the formation of seeds, but strongly delays them by recognition of hydrophobic sites of some peptide species crucial for triggering amyloid formation. Hsp60 reduces the initial chaotic heterogeneity of Aβ1-42 sample at high concentration regimes. The understanding of chaperone action in counteracting pathological aggregation could be a starting point for potential new therapeutic strategies against neurodegenerative diseases.
Alzheimer's disease treatment; Amyloid aggregation; ANS dye; chaperonin; hydrophobic regions; inhibition mechanisms; molecular chaperones; structural evolution; Alzheimer Disease; Amyloid beta-Peptides; Chaperonin 60; Humans; Mitochondrial Proteins; Molecular Chaperones; Peptide Fragments; Protein Folding
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
vilasi2019-hspabeta.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1048009
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact