The spread of biogenic matrices for agricultural purposes can lead to plastic input into soils, raising a question on possible consequences for the environment. Nonetheless, the current knowledge concerning the presence of plastics in biogenic matrices is very poor. Therefore, the objective of the present study was a quali-quantitative characterization of plastics in different matrices reused in agriculture as manures, digestate, compost and sewage sludges. Plastics were quantified and characterized using a Fourier Transform Infrared Spectroscopy coupled with an optical microscope (μFT-IR) in Attenuated Total Reflectance mode. Our study showed the presence of plastics in all the investigated samples, albeit with differences in the content among the matrices. We measured a lower presence in animal matrices (0.06-0.08 plastics/g wet weight w.w.), while 3.14-5.07 plastics/g w.w. were measured in sewage sludges. Fibres were the prevalent shape and plastic debris were mostly in the micrometric size. The most abundant polymers were polyester (PEST), polypropylene (PP) and polyethylene (PE). The worst case was observed in the compost sample, where 986 plastics/g w.w. were detected. The majority of these plastics were compostable and biodegradable, with only 8% consisting of fragments of PEST and PE. Our results highlighted the need to thoroughly evaluate the contribution of reused matrices in agriculture to the plastic accumulation in the soil system.

Plastics in biogenic matrices intended for reuse in agriculture and the potential contribution to soil accumulation / S. Magni, M. Fossati, R. Pedrazzani, A. Abbà, M. Domini, M. Menghini, S. Castiglioni, G. Bertanza, A. Binelli, C. Della Torre. - In: ENVIRONMENTAL POLLUTION. - ISSN 0269-7491. - 349:(2024 May 15), pp. 123986.1-123986.8. [10.1016/j.envpol.2024.123986]

Plastics in biogenic matrices intended for reuse in agriculture and the potential contribution to soil accumulation

S. Magni
Primo
;
A. Binelli
Penultimo
;
C. Della Torre
Ultimo
2024

Abstract

The spread of biogenic matrices for agricultural purposes can lead to plastic input into soils, raising a question on possible consequences for the environment. Nonetheless, the current knowledge concerning the presence of plastics in biogenic matrices is very poor. Therefore, the objective of the present study was a quali-quantitative characterization of plastics in different matrices reused in agriculture as manures, digestate, compost and sewage sludges. Plastics were quantified and characterized using a Fourier Transform Infrared Spectroscopy coupled with an optical microscope (μFT-IR) in Attenuated Total Reflectance mode. Our study showed the presence of plastics in all the investigated samples, albeit with differences in the content among the matrices. We measured a lower presence in animal matrices (0.06-0.08 plastics/g wet weight w.w.), while 3.14-5.07 plastics/g w.w. were measured in sewage sludges. Fibres were the prevalent shape and plastic debris were mostly in the micrometric size. The most abundant polymers were polyester (PEST), polypropylene (PP) and polyethylene (PE). The worst case was observed in the compost sample, where 986 plastics/g w.w. were detected. The majority of these plastics were compostable and biodegradable, with only 8% consisting of fragments of PEST and PE. Our results highlighted the need to thoroughly evaluate the contribution of reused matrices in agriculture to the plastic accumulation in the soil system.
compost; manure; microplastics; sewage sludge; soil pollution;
Settore BIO/07 - Ecologia
   SLudge (and other residues) Recovery in agriculture: environment and health Protection (SLURP)
   SLURP
   FONDAZIONE CARIPLO
   2020-1029
15-mag-2024
16-apr-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0269749124007000-main.pdf

accesso aperto

Descrizione: Versione pubblicata
Tipologia: Publisher's version/PDF
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1047113
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact