Recently, there has been an increasing interest in developing statistical methods able to find groups in matrix-valued data. To this extent, matrix Gaussian mixture models (MGMM) provide a natural extension to the popular model-based clustering based on Normal mixtures. Unfortunately, the overparametrization issue, already affecting the vector-variate framework, is further exacerbated when it comes to MGMM, since the number of parameters scales quadratically with both row and column dimensions. In order to overcome this limitation, the present paper introduces a sparse model-based clustering approach for three-way data structures. By means of penalized estimation, our methodology shrinks the estimates towards zero, achieving more stable and parsimonious clustering in high dimensional scenarios. An application to satellite images underlines the benefits of the proposed method.

Penalized model-based clustering for three-way data structures = Clustering penalizzato basato sul modello per dati con struttura tridimensionale / A. Cappozzo, A. Casa, M. Fop - In: Book of Short Papers SIS 2021 / [a cura di] C. Perna N. Salvati F. Schirripa Spagnolo. - [s.l] : Pearson, 2021. - ISBN 9788891927361. - pp. 758-763 (( Intervento presentato al 50. convegno Scientific Meeting of the Italian Statistical Society tenutosi a Pisa nel 2021.

Penalized model-based clustering for three-way data structures = Clustering penalizzato basato sul modello per dati con struttura tridimensionale

A. Cappozzo;
2021

Abstract

Recently, there has been an increasing interest in developing statistical methods able to find groups in matrix-valued data. To this extent, matrix Gaussian mixture models (MGMM) provide a natural extension to the popular model-based clustering based on Normal mixtures. Unfortunately, the overparametrization issue, already affecting the vector-variate framework, is further exacerbated when it comes to MGMM, since the number of parameters scales quadratically with both row and column dimensions. In order to overcome this limitation, the present paper introduces a sparse model-based clustering approach for three-way data structures. By means of penalized estimation, our methodology shrinks the estimates towards zero, achieving more stable and parsimonious clustering in high dimensional scenarios. An application to satellite images underlines the benefits of the proposed method.
Model based clustering; Matrix distribution; EM-algorithm; penalized likelihood; Sparse matrix estimation
Settore SECS-S/01 - Statistica
2021
https://it.pearson.com/content/dam/region-core/italy/pearson-italy/pdf/Docenti/Università/pearson-sis-book-2021-parte-1.pdf
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
CappozzoCasaFop_SIS_2021.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 128.01 kB
Formato Adobe PDF
128.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1045011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact