In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn × f Qq , where f â̂̂ C ∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.

Eigenvalue estimates for submanifolds of warped product spaces / P. Bessa Gregório, C. García–Martínez Sandra, L. Mari, F. Ramirez–Ospina Hector. - In: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY. - ISSN 0305-0041. - 156:01(2014 Jan), pp. 25-42. [10.1017/S0305004113000443]

Eigenvalue estimates for submanifolds of warped product spaces

L. Mari
Penultimo
;
2014

Abstract

In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn × f Qq , where f â̂̂ C ∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.
Settore MAT/03 - Geometria
Settore MAT/05 - Analisi Matematica
gen-2014
28-giu-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
eigenvalue-estimates-for-submanifolds-of-warped-product-spaces.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 178.59 kB
Formato Adobe PDF
178.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1039448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact