Background: Treatment decision-making in oropharyngeal squamous cell carcinoma (OPSCC) includes clinical stage, HPV status, and smoking history. Despite improvements in staging with separation of HPV-positive and -negative OPSCC in AJCC 8th edition (AJCC8), patients are largely treated with a uniform approach, with recent efforts focused on de-intensification in low-risk patients. We have previously shown, in a pooled analysis, that the genomic adjusted radiation dose (GARD) is predictive of radiation treatment benefit and can be used to guide RT dose selection. We hypothesize that GARD can be used to predict overall survival (OS) in HPV-positive OPSCC patients treated with radiotherapy (RT). Methods: Gene expression profiles (Affymetrix Clariom D) were analyzed for 234 formalin-fixed paraffin-embedded samples from HPV-positive OPSCC patients within an international, multi-institutional, prospective/retrospective observational study including patients with AJCC 7th edition stage III-IVb. GARD, a measure of the treatment effect of RT, was calculated for each patient as previously described. In total, 191 patients received primary RT definitive treatment (chemoradiation or RT alone, and 43 patients received post-operative RT. Two RT dose fractionations were utilized for primary RT cases (70 Gy in 35 fractions or 69.96 Gy in 33 fractions). Median RT dose was 70 Gy (range 50.88-74) for primary RT definitive cases and 66 Gy (range 44-70) for post-operative RT cases. The median follow up was 46.2 months (95% CI, 33.5-63.1). Cox proportional hazards analyses were performed with GARD as both a continuous and dichotomous variable and time-dependent ROC analyses compared the performance of GARD with the NRG clinical nomogram for overall survival. Results: Despite uniform radiation dose utilization, GARD showed significant heterogeneity (range 30-110), reflecting the underlying genomic differences in the cohort. On multivariable analysis, each unit increase in GARD was associated with an improvement in OS (HR = 0.951 (0.911, 0.993), p = 0.023) compared to AJCC8 (HR = 1.999 (0.791, 5.047)), p = 0.143). ROC analysis for GARD at 36 months yielded an AUC of 80.6 (69.4, 91.9) compared with an AUC of 73.6 (55.4, 91.7) for the NRG clinical nomogram. GARD≥64.2 was associated with improved OS (HR = 0.280 (0.100, 0.781), p = 0.015). In a virtual trial, GARD predicts that uniform RT dose de-escalation results in overall inferior OS but proposes two separate genomic strategies where selective RT dose de-escalation in GARD-selected populations results in clinical equipoise. Conclusions: In this multi-institutional cohort of patients with HPV-positive OPSCC, GARD predicts OS as a continuous variable, outperforms the NRG nomogram and provides a novel genomic strategy to modern clinical trial design. We propose that GARD, which provides the first opportunity for genomic guided personalization of radiation dose, should be incorporated in the diagnostic workup of HPV-positive OPSCC patients.

A clinicogenomic model including GARD predicts outcome for radiation treated patients with HPV+ oropharyngeal squamous cell carcinoma / E. Ho, L. De Cecco, S. Cavalieri, G. Sedor, F. Hoebers, R. Brakenhoff, K. Scheckenbach, T. Poli, K. Yang, J. Scarborough, S. Campbell, S. Koyfman, S. Eschrich, J. Caudell, M. Kattan, L. Licitra, J. Torres-Roca, J. Scott. - (2023 Sep 14). [10.1101/2023.09.14.23295538]

A clinicogenomic model including GARD predicts outcome for radiation treated patients with HPV+ oropharyngeal squamous cell carcinoma

S. Cavalieri;L. Licitra;
2023

Abstract

Background: Treatment decision-making in oropharyngeal squamous cell carcinoma (OPSCC) includes clinical stage, HPV status, and smoking history. Despite improvements in staging with separation of HPV-positive and -negative OPSCC in AJCC 8th edition (AJCC8), patients are largely treated with a uniform approach, with recent efforts focused on de-intensification in low-risk patients. We have previously shown, in a pooled analysis, that the genomic adjusted radiation dose (GARD) is predictive of radiation treatment benefit and can be used to guide RT dose selection. We hypothesize that GARD can be used to predict overall survival (OS) in HPV-positive OPSCC patients treated with radiotherapy (RT). Methods: Gene expression profiles (Affymetrix Clariom D) were analyzed for 234 formalin-fixed paraffin-embedded samples from HPV-positive OPSCC patients within an international, multi-institutional, prospective/retrospective observational study including patients with AJCC 7th edition stage III-IVb. GARD, a measure of the treatment effect of RT, was calculated for each patient as previously described. In total, 191 patients received primary RT definitive treatment (chemoradiation or RT alone, and 43 patients received post-operative RT. Two RT dose fractionations were utilized for primary RT cases (70 Gy in 35 fractions or 69.96 Gy in 33 fractions). Median RT dose was 70 Gy (range 50.88-74) for primary RT definitive cases and 66 Gy (range 44-70) for post-operative RT cases. The median follow up was 46.2 months (95% CI, 33.5-63.1). Cox proportional hazards analyses were performed with GARD as both a continuous and dichotomous variable and time-dependent ROC analyses compared the performance of GARD with the NRG clinical nomogram for overall survival. Results: Despite uniform radiation dose utilization, GARD showed significant heterogeneity (range 30-110), reflecting the underlying genomic differences in the cohort. On multivariable analysis, each unit increase in GARD was associated with an improvement in OS (HR = 0.951 (0.911, 0.993), p = 0.023) compared to AJCC8 (HR = 1.999 (0.791, 5.047)), p = 0.143). ROC analysis for GARD at 36 months yielded an AUC of 80.6 (69.4, 91.9) compared with an AUC of 73.6 (55.4, 91.7) for the NRG clinical nomogram. GARD≥64.2 was associated with improved OS (HR = 0.280 (0.100, 0.781), p = 0.015). In a virtual trial, GARD predicts that uniform RT dose de-escalation results in overall inferior OS but proposes two separate genomic strategies where selective RT dose de-escalation in GARD-selected populations results in clinical equipoise. Conclusions: In this multi-institutional cohort of patients with HPV-positive OPSCC, GARD predicts OS as a continuous variable, outperforms the NRG nomogram and provides a novel genomic strategy to modern clinical trial design. We propose that GARD, which provides the first opportunity for genomic guided personalization of radiation dose, should be incorporated in the diagnostic workup of HPV-positive OPSCC patients.
GARD; genomics; mathematical model; personalized medicine; radiation therapy
Settore MED/06 - Oncologia Medica
Settore MED/36 - Diagnostica per Immagini e Radioterapia
14-set-2023
https://www.medrxiv.org/content/10.1101/2023.09.14.23295538v1
File in questo prodotto:
File Dimensione Formato  
2023.09.14.23295538v1.full.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 663.11 kB
Formato Adobe PDF
663.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1039373
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact