n this paper, we study some potential-theoretic aspects of the eikonal and infinity Laplace operator on a Finsler manifold M. Our main result shows that the forward completeness of M can be detected in terms of Liouville properties and maximum principles at infinity for subsolutions of suitable inequalities, including Δ∞Nu≥g(u). Also, an ∞-capacity criterion and a viscosity version of Ekeland principle are proved to be equivalent to the forward completeness of M. Part of the proof hinges on a new boundary-to-interior Lipschitz estimate for solutions of Δ∞Nu=g(u) on relatively compact sets, that implies a uniform Lipschitz estimate for certain entire, bounded solutions without requiring the completeness of M.
Detecting the completeness of a Finsler manifold via potential theory for its infinity Laplacian / D.J. Araújo, L. Mari, L.F. Pessoa. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 281:(2021 Apr 25), pp. 550-587. [10.1016/j.jde.2021.02.005]
Detecting the completeness of a Finsler manifold via potential theory for its infinity Laplacian
L. MariPenultimo
;
2021
Abstract
n this paper, we study some potential-theoretic aspects of the eikonal and infinity Laplace operator on a Finsler manifold M. Our main result shows that the forward completeness of M can be detected in terms of Liouville properties and maximum principles at infinity for subsolutions of suitable inequalities, including Δ∞Nu≥g(u). Also, an ∞-capacity criterion and a viscosity version of Ekeland principle are proved to be equivalent to the forward completeness of M. Part of the proof hinges on a new boundary-to-interior Lipschitz estimate for solutions of Δ∞Nu=g(u) on relatively compact sets, that implies a uniform Lipschitz estimate for certain entire, bounded solutions without requiring the completeness of M.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022039621000693-main(1).pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
490.76 kB
Formato
Adobe PDF
|
490.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2005.04440v1.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
354.33 kB
Formato
Adobe PDF
|
354.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.