Robust inference for the Cluster Weighted Model requires the specification of a few hyper-parameters. Their role is crucial for increasing the quality of the estimators, while arbitrary decisions about their value could severely hamper inferential results. To guide the user in the delicate choice of such parameters, a monitoring approach has been introduced in the recent literature, yielding an adaptive method. The approach is here exemplified, via the analysis of a dataset on the effect of punishment regimes on crime rates.

Monitoring Tools in Robust CWM for the Analysis of Crime Data / A. Cappozzo, L. Garcia-Escudero, F. Greselin, A. Mayo-Iscar (ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING). - In: Building Bridges between Soft and Statistical Methodologies for Data Science / [a cura di] Luis A. García-Escudero Alfonso Gordaliza Agustín Mayo María Asunción Lubiano Gomez Maria Angeles Gil Przemyslaw Grzegorzewski Olgierd Hryniewicz. - Cham : Springer, 2023. - ISBN 978-3-031-15508-6. - pp. 65-72 (( Intervento presentato al 10. convegno International Conference on Soft Methods in Probability and Statistics (SMPS) tenutosi a Valladolid : 14-16 September nel 2022 [10.1007/978-3-031-15509-3_9].

Monitoring Tools in Robust CWM for the Analysis of Crime Data

A. Cappozzo
Primo
;
2023

Abstract

Robust inference for the Cluster Weighted Model requires the specification of a few hyper-parameters. Their role is crucial for increasing the quality of the estimators, while arbitrary decisions about their value could severely hamper inferential results. To guide the user in the delicate choice of such parameters, a monitoring approach has been introduced in the recent literature, yielding an adaptive method. The approach is here exemplified, via the analysis of a dataset on the effect of punishment regimes on crime rates.
Settore SECS-S/01 - Statistica
2023
Universidad de Valladolid
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
CWM_SMPS_book.pdf

accesso riservato

Descrizione: Conference Paper
Tipologia: Publisher's version/PDF
Dimensione 362.6 kB
Formato Adobe PDF
362.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1039293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact