In this paper, we define an energy-momentum vector at the spatial infinity of either asymptotically flat or asymptotically hyperbolic initial data sets carrying a noncompact boundary. Under suitable dominant energy conditions (DECs) imposed both on the interior and along the boundary, we prove the corresponding positive mass inequalities under the assumption that the underlying manifold is spin. In the asymptotically flat case, we also prove a rigidity statement when the energy-momentum vector is lightlike. Our treatment aims to underline both the common features and the differences between the asymptotically Euclidean and hyperbolic settings, especially regarding the boundary DECs.

Spacetime Positive Mass Theorems for Initial Data Sets with Non-Compact Boundary / S. Almaraz, L.L. de Lima, L. Mari. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2021:4(2021 Feb), pp. 2783-2841. [10.1093/imrn/rnaa226]

Spacetime Positive Mass Theorems for Initial Data Sets with Non-Compact Boundary

L. Mari
Ultimo
2021

Abstract

In this paper, we define an energy-momentum vector at the spatial infinity of either asymptotically flat or asymptotically hyperbolic initial data sets carrying a noncompact boundary. Under suitable dominant energy conditions (DECs) imposed both on the interior and along the boundary, we prove the corresponding positive mass inequalities under the assumption that the underlying manifold is spin. In the asymptotically flat case, we also prove a rigidity statement when the energy-momentum vector is lightlike. Our treatment aims to underline both the common features and the differences between the asymptotically Euclidean and hyperbolic settings, especially regarding the boundary DECs.
Settore MAT/03 - Geometria
Settore MAT/05 - Analisi Matematica
feb-2021
7-set-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
mass-bd-for arxiv.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 462.58 kB
Formato Adobe PDF
462.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1907.02023v4.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 512.05 kB
Formato Adobe PDF
512.05 kB Adobe PDF Visualizza/Apri
rnaa226.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 593.98 kB
Formato Adobe PDF
593.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1039270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact