Although an increasing body of evidence suggests that triclocarban, a phenyl ether classified as a contaminant of emerging concern, presents a risk to development, there is limited data available on the potential interplay of triclocarban with the developing mammalian nervous system. This study was aimed to investigate the impact of environmentally pervasive chemical triclocarban on autophagy and estrogen receptor-mediated signaling pathways in mouse neurons. The study showed that triclocarban impaired autophagy and disrupted estrogen receptor signaling in mouse embryonic neurons in primary culture. Triclocarban used at environmentally relevant concentrations inhibited the mRNA and protein expression of ESR1 and GPER1 but not ESR2. The triclocarban-induced decrease in the expression of estrogen receptors was supported by the colocalization of the receptors in mouse neurons and corresponded to hypermethylation of the Esr1 and Gper1 genes. Selective antagonists increased the effects of triclocarban, which suggests that the neurotoxic effects of triclocarban, in addition to decreasing estrogen receptor expression, are mediated via inhibition of the neuroprotective capacity of the receptors. Furthermore, Becn1 and Atg7 siRNAs potentiated the caspase-3-dependent effect of triclocarban, which points to triclocarban-induced impairment of autophagy. Indeed, triclocarban dysregulated the expression of autophagy-related genes, and caused a time-dependent inhibition of the mRNA expression of Becn1, Map1lc3a, Map1lc3b, Nup62, and Atg7, which was correlated with a decrease in the protein levels of MAP1LC3B, BECN1 and autophagosomes, but not NUP62 protein level which was increased. Intriguingly, the Esr1 and Gper1 siRNAs did not affect the level of autophagosomes, suggesting that the triclocarban-induced impairment of autophagy is independent of the triclocarban-induced disruption of estrogen receptor signaling in mammalian neurons. Because our data provided evidence that triclocarban has the capacity to impair autophagy and disrupt estrogen receptor signaling in brain neurons at an early developmental stage, we postulate to categorize the compound as a neurodevelopmental risk factor.

Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes / M. Kajta, J. Rzemieniec, A. Wnuk, W. Lason. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 701:(2020 Jan 20), pp. 134818.1-134818.15. [10.1016/j.scitotenv.2019.134818]

Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes

J. Rzemieniec
Secondo
;
2020

Abstract

Although an increasing body of evidence suggests that triclocarban, a phenyl ether classified as a contaminant of emerging concern, presents a risk to development, there is limited data available on the potential interplay of triclocarban with the developing mammalian nervous system. This study was aimed to investigate the impact of environmentally pervasive chemical triclocarban on autophagy and estrogen receptor-mediated signaling pathways in mouse neurons. The study showed that triclocarban impaired autophagy and disrupted estrogen receptor signaling in mouse embryonic neurons in primary culture. Triclocarban used at environmentally relevant concentrations inhibited the mRNA and protein expression of ESR1 and GPER1 but not ESR2. The triclocarban-induced decrease in the expression of estrogen receptors was supported by the colocalization of the receptors in mouse neurons and corresponded to hypermethylation of the Esr1 and Gper1 genes. Selective antagonists increased the effects of triclocarban, which suggests that the neurotoxic effects of triclocarban, in addition to decreasing estrogen receptor expression, are mediated via inhibition of the neuroprotective capacity of the receptors. Furthermore, Becn1 and Atg7 siRNAs potentiated the caspase-3-dependent effect of triclocarban, which points to triclocarban-induced impairment of autophagy. Indeed, triclocarban dysregulated the expression of autophagy-related genes, and caused a time-dependent inhibition of the mRNA expression of Becn1, Map1lc3a, Map1lc3b, Nup62, and Atg7, which was correlated with a decrease in the protein levels of MAP1LC3B, BECN1 and autophagosomes, but not NUP62 protein level which was increased. Intriguingly, the Esr1 and Gper1 siRNAs did not affect the level of autophagosomes, suggesting that the triclocarban-induced impairment of autophagy is independent of the triclocarban-induced disruption of estrogen receptor signaling in mammalian neurons. Because our data provided evidence that triclocarban has the capacity to impair autophagy and disrupt estrogen receptor signaling in brain neurons at an early developmental stage, we postulate to categorize the compound as a neurodevelopmental risk factor.
Autophagosomes; Environmentally pervasive chemicals; Epigenetic status; ESR1; GPER1; Primary neurons;
Settore BIO/14 - Farmacologia
20-gen-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Triclocarban Science of the total environment 2020.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1037129
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact