Selective estrogen receptor modulators (SERMs) such as bazedoxifene and raloxifene are recognized to mainly act via estrogen receptors (ERs), but there is no study examining the involvement of PPAR-γ in their actions, especially in neurons undergoing hypoxia. Little is also known about age-dependent actions of the SERMs on neuronal tissue challenged with hypoxia. In this study, bazedoxifene and raloxifene protected neocortical cells against hypoxia at early and later developmental stages. Both SERMs evoked caspase-3-independent neuroprotection and increased protein levels of ERα (66 and 46 kDa isoforms) and PPAR-γ. In addition, bazedoxifene enhanced expression of ERα-regulated Cyp19a1 mRNA. Using double siRNA silencing, for the first time we demonstrated a key role of ERα and PPAR-γ in the neuroprotective action of the SERMs in neocortical neurons undergoing hypoxia. This study provides prospects for the development of a new therapeutic strategies against hypoxic brain injury that selectively target ERα and/or PPAR-γ.
Bazedoxifene and raloxifene protect neocortical neurons undergoing hypoxia via targeting ERα and PPAR-γ / J. Rzemieniec, E. Litwa, A. Wnuk, W. Lason, M. Kajta. - In: MOLECULAR AND CELLULAR ENDOCRINOLOGY. - ISSN 0303-7207. - 461:(2018 Feb 05), pp. 64-78. [10.1016/j.mce.2017.08.014]
Bazedoxifene and raloxifene protect neocortical neurons undergoing hypoxia via targeting ERα and PPAR-γ
J. RzemieniecPrimo
;
2018
Abstract
Selective estrogen receptor modulators (SERMs) such as bazedoxifene and raloxifene are recognized to mainly act via estrogen receptors (ERs), but there is no study examining the involvement of PPAR-γ in their actions, especially in neurons undergoing hypoxia. Little is also known about age-dependent actions of the SERMs on neuronal tissue challenged with hypoxia. In this study, bazedoxifene and raloxifene protected neocortical cells against hypoxia at early and later developmental stages. Both SERMs evoked caspase-3-independent neuroprotection and increased protein levels of ERα (66 and 46 kDa isoforms) and PPAR-γ. In addition, bazedoxifene enhanced expression of ERα-regulated Cyp19a1 mRNA. Using double siRNA silencing, for the first time we demonstrated a key role of ERα and PPAR-γ in the neuroprotective action of the SERMs in neocortical neurons undergoing hypoxia. This study provides prospects for the development of a new therapeutic strategies against hypoxic brain injury that selectively target ERα and/or PPAR-γ.File | Dimensione | Formato | |
---|---|---|---|
8. Mol Cell Endocrinol. 2018.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.99 MB
Formato
Adobe PDF
|
1.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.