The Friedmann equations of Cotton gravity provide a simple parametrization to reproduce, by tuning a single function, the Friedmann equations of several extensions of gravity, such as f(R), modified Gauss- Bonnet f(G), teleparallel f(T), and more. It also includes the recently proposed conformal Killing gravity and mimetic gravity in Friedmann-Robertson-Walker space-times. The extensions generally have the form of a Codazzi tensor that may be associated to the dark sector. Fixing it by a suitable equation of state accomodates most of the postulated models that extend ΛCDM, as the Chevallier-Polarski-Lindler model.

Friedmann equations in the Codazzi parametrization of Cotton and extended theories of gravity and the dark sector / C.A. Mantica, L.G. Molinari. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 109:4(2024), pp. 044059.1-044059.12. [Epub ahead of print] [10.1103/physrevd.109.044059]

Friedmann equations in the Codazzi parametrization of Cotton and extended theories of gravity and the dark sector

C.A. Mantica
Primo
;
L.G. Molinari
Ultimo
2024

Abstract

The Friedmann equations of Cotton gravity provide a simple parametrization to reproduce, by tuning a single function, the Friedmann equations of several extensions of gravity, such as f(R), modified Gauss- Bonnet f(G), teleparallel f(T), and more. It also includes the recently proposed conformal Killing gravity and mimetic gravity in Friedmann-Robertson-Walker space-times. The extensions generally have the form of a Codazzi tensor that may be associated to the dark sector. Fixing it by a suitable equation of state accomodates most of the postulated models that extend ΛCDM, as the Chevallier-Polarski-Lindler model.
FRW spacetime; cosmology; Cotton gravity; Codazzi tensor; extended theories of gravity; dark sector
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
2024
22-feb-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
32_PhysRevD.109.044059.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 286 kB
Formato Adobe PDF
286 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2312.02784.pdf

accesso aperto

Descrizione: versione pubblica in ARXIV
Tipologia: Publisher's version/PDF
Dimensione 260.15 kB
Formato Adobe PDF
260.15 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1031568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact