We devise a generalization of tree approximation that generates conforming meshes, i.e., meshes with a particular structure like edge-to-edge triangulations. A key feature of this generalization is that the choices of the cells to be subdivided are affected by that particular structure. As main result, we prove near best approximation with respect to conforming meshes, independent of constants such as the completion constant for newest-vertex bisection. Numerical experiments complement the theoretical results.

Near-Best Adaptive Approximation on Conforming Meshes / P. Binev, F. Fierro, A. Veeser. - In: CONSTRUCTIVE APPROXIMATION. - ISSN 0176-4276. - 57:2(2023 Apr), pp. 327-349. [10.1007/s00365-022-09612-2]

Near-Best Adaptive Approximation on Conforming Meshes

F. Fierro;A. Veeser
Ultimo
2023

Abstract

We devise a generalization of tree approximation that generates conforming meshes, i.e., meshes with a particular structure like edge-to-edge triangulations. A key feature of this generalization is that the choices of the cells to be subdivided are affected by that particular structure. As main result, we prove near best approximation with respect to conforming meshes, independent of constants such as the completion constant for newest-vertex bisection. Numerical experiments complement the theoretical results.
Adaptive approximation; Conforming meshes; h-refinement; Near-best approximation; Nonlinear approximation; Tree approximation
Settore MAT/08 - Analisi Numerica
Settore MATH-05/A - Analisi numerica
   Optimal Convergence Rates for Adaptive Finite Element Techniques
   National Science Foundation
   Directorate for Mathematical & Physical Sciences
   1720297
apr-2023
22-gen-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
ms_air.pdf

Open Access dal 23/01/2024

Descrizione: Accepted manuscript with acknowlegment required by publisher
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri
s00365-022-09612-2.pdf

accesso riservato

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 646.98 kB
Formato Adobe PDF
646.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1030588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact