Understanding the ultrafast demagnetization of transition metals requires pump-probe experiments sensitive to the time evolution of the electronic, spin, and lattice thermodynamic baths. By means of time-resolved photoelectron energy and spin-polarization measurements in the low-pump-fluence regime on iron, we disentangle the different dynamics of hot electrons and demagnetization in the subpicosecond and picosecond time range. We observe a broadening of the Fermi-Dirac distribution, following the excitation of nonthermal electrons at specific region of the iron valence band. The corresponding reduction of the spin polarization is remarkably delayed with respect to the dynamics of electronic temperature. The experimental results are corroborated with a microscopic 3-temperature model highlighting the role of thermal disorder in the quenching of the average spin magnetic moment, and indicating Elliot-Yafet type spin-flip scattering as the main mediation mechanism, with a spin-flip probability of 0.1 and a rate of energy exchange between electrons and lattice of 2.5 K fs−1 .

Relevance of thermal disorder in the electronic and spin ultrafast dynamics of iron in the low-perturbation regime / G.M. Pierantozzi, A. De Vita, R. Cucini, A.M. Finardi, T. Pincelli, F. Sirotti, J. Fujii, C. Dri, G. Brajnik, R. Sergo, G. Cautero, G. Panaccione, G. Rossi. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 109:(2024), pp. 064411.1-064411.6. [10.1103/PhysRevB.109.064411]

Relevance of thermal disorder in the electronic and spin ultrafast dynamics of iron in the low-perturbation regime

A. De Vita
Secondo
;
A.M. Finardi;G. Rossi
Ultimo
2024

Abstract

Understanding the ultrafast demagnetization of transition metals requires pump-probe experiments sensitive to the time evolution of the electronic, spin, and lattice thermodynamic baths. By means of time-resolved photoelectron energy and spin-polarization measurements in the low-pump-fluence regime on iron, we disentangle the different dynamics of hot electrons and demagnetization in the subpicosecond and picosecond time range. We observe a broadening of the Fermi-Dirac distribution, following the excitation of nonthermal electrons at specific region of the iron valence band. The corresponding reduction of the spin polarization is remarkably delayed with respect to the dynamics of electronic temperature. The experimental results are corroborated with a microscopic 3-temperature model highlighting the role of thermal disorder in the quenching of the average spin magnetic moment, and indicating Elliot-Yafet type spin-flip scattering as the main mediation mechanism, with a spin-flip probability of 0.1 and a rate of energy exchange between electrons and lattice of 2.5 K fs−1 .
Settore FIS/03 - Fisica della Materia
Settore FIS/01 - Fisica Sperimentale
2024
13-feb-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevB.109.064411.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1029395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact