G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating the exchange of guanine nucleotide in the Gα subunit. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G protein complex. Using variability analysis to monitor the transitions of the stimulatory Gs protein in complex with the β2-adrenergic receptor (β2AR) at short sequential time points after GTP addition, we identified the conformational trajectory underlying G protein activation and functional dissociation from the receptor. Twenty transition structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of events driving G protein activation upon GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα Switch regions and the α5 helix that weaken the G protein-receptor interface. Molecular dynamics (MD) simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP upon closure of the alpha-helical domain (AHD) against the nucleotide-bound Ras-homology domain (RHD) correlates with irreversible α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signaling events.

Time-resolved cryo-EM of G protein activation by a GPCR / M.M. Papasergi-Scott, G. Pérez-Hernández, H. Batebi, Y. Gao, G. Eskici, A.B. Seven, O. Panova, D. Hilger, M. Casiraghi, F. He, L. Maul, P. Gmeiner, B.K. Kobilka, P.W. Hildebrand, G. Skiniotis. - (2023 Mar 21). [10.1101/2023.03.20.533387]

Time-resolved cryo-EM of G protein activation by a GPCR

M. Casiraghi;
2023

Abstract

G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating the exchange of guanine nucleotide in the Gα subunit. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G protein complex. Using variability analysis to monitor the transitions of the stimulatory Gs protein in complex with the β2-adrenergic receptor (β2AR) at short sequential time points after GTP addition, we identified the conformational trajectory underlying G protein activation and functional dissociation from the receptor. Twenty transition structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of events driving G protein activation upon GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα Switch regions and the α5 helix that weaken the G protein-receptor interface. Molecular dynamics (MD) simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP upon closure of the alpha-helical domain (AHD) against the nucleotide-bound Ras-homology domain (RHD) correlates with irreversible α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signaling events.
Settore BIO/10 - Biochimica
21-mar-2023
https://www.biorxiv.org/content/10.1101/2023.03.20.533387v2
File in questo prodotto:
File Dimensione Formato  
Time resolved Cryo.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1029170
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact