In this paper we show the existence of weak solutions w:M→R of the inverse mean curvature flow starting from a relatively compact set (possibly, a point) on a large class of manifolds satisfying Ricci lower bounds. Under natural assumptions, we obtain sharp estimates for the growth of w and for the mean curvature of its level sets, that are well behaved with respect to Gromov-Hausdorff convergence. The construction follows R. Moser's approximation procedure via the p-Laplace equation, and relies on new gradient and decay estimates for p-harmonic capacity potentials, notably for the kernel Gp of Δp. These bounds, stable as p→1, are achieved by studying fake distances associated to capacity potentials and Green kernels. We conclude by investigating some basic isoperimetric properties of the level sets of w.

On the 1∕H-flow by p-Laplace approximation: new estimates via fake distances under Ricci lower bounds / L. Mari, M. Rigoli, A.G. Setti. - In: AMERICAN JOURNAL OF MATHEMATICS. - ISSN 0002-9327. - 144:3(2022 Jun), pp. 779-849. [10.1353/ajm.2022.0016]

On the 1∕H-flow by p-Laplace approximation: new estimates via fake distances under Ricci lower bounds

L. Mari
Primo
;
M. Rigoli
Penultimo
;
2022

Abstract

In this paper we show the existence of weak solutions w:M→R of the inverse mean curvature flow starting from a relatively compact set (possibly, a point) on a large class of manifolds satisfying Ricci lower bounds. Under natural assumptions, we obtain sharp estimates for the growth of w and for the mean curvature of its level sets, that are well behaved with respect to Gromov-Hausdorff convergence. The construction follows R. Moser's approximation procedure via the p-Laplace equation, and relies on new gradient and decay estimates for p-harmonic capacity potentials, notably for the kernel Gp of Δp. These bounds, stable as p→1, are achieved by studying fake distances associated to capacity potentials and Green kernels. We conclude by investigating some basic isoperimetric properties of the level sets of w.
No
English
Settore MAT/03 - Geometria
Settore MAT/05 - Analisi Matematica
Articolo
Esperti anonimi
Pubblicazione scientifica
   Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2015A35N9B_007
giu-2022
Johns Hopkins University Press
144
3
779
849
71
Pubblicato
Periodico con rilevanza internazionale
Corrigendum to "On the 1/H-flow by p-Laplace approximation: new estimates via fake distances under Ricci lower bounds [Amer. J. Math. 144 (2022), no. 3, 779–849]" in Volume 145, Number 3, June 2023, pp. 667-671
https://arxiv.org/abs/1905.00216
miur
MIUR
Aderisco
info:eu-repo/semantics/article
On the 1∕H-flow by p-Laplace approximation: new estimates via fake distances under Ricci lower bounds / L. Mari, M. Rigoli, A.G. Setti. - In: AMERICAN JOURNAL OF MATHEMATICS. - ISSN 0002-9327. - 144:3(2022 Jun), pp. 779-849. [10.1353/ajm.2022.0016]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
3
262
Article (author)
Periodico con Impact Factor
L. Mari, M. Rigoli, A.G. Setti
File in questo prodotto:
File Dimensione Formato  
pLaplacian_AJM_conerratum_nocolor.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 545.01 kB
Formato Adobe PDF
545.01 kB Adobe PDF Visualizza/Apri
project_muse_856006(7).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 652.79 kB
Formato Adobe PDF
652.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
project_muse_897493(2).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 359.55 kB
Formato Adobe PDF
359.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1028831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact