Rare earth vanadate, LaVO3 (LVO) is a Mott-Hubbard insulator in which the spin, charge, and lattice degrees of freedom are intimately coupled, making them exhibit several interesting phenomena such as metal-insulator transition, ferroelectricity, 2D superconductivity etc. Epitaxial strain in LVO has a direct influence on their physical properties. This scenario provides an excellent playground to fine-tune the functionalities of LVO in electronic and spintronic devices. However, a thorough understanding of the epitaxial strain effect in LVO thin films has remained elusive due to the lack of systematic studies. This work demonstrates a wide-range epitaxial strain control of structural and electrical properties in high-quality LVO thin films. The epitaxial strain was imposed by cubic or pseudocubic perovskite substrates with a lattice mismatch ranging from -3.7 to +1.5% with respect to bulk LVO. Our results provide relevant guidelines to design LVO-based heterostructures for device applications.

Substrate driven strain effects in LaVO3 thin films grown by Pulsed Laser Deposition / S. Punathum Chalil, S. Kumar Chaluvadi, A. Jana, J. Fujii, I. Vobornik, G. Rossi, F. Mazzola, P. Orgiani1 (IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE). - In: 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC)[s.l] : IEEE, 2023. - ISBN 979-8-3503-3546-0. - pp. 510-511 (( Intervento presentato al 18. convegno IEEE Nanotechnology Materials and Devices Conference (NMDC) tenutosi a Paestum nel 2023 [10.1109/NMDC57951.2023.10344306].

Substrate driven strain effects in LaVO3 thin films grown by Pulsed Laser Deposition

G. Rossi;
2023

Abstract

Rare earth vanadate, LaVO3 (LVO) is a Mott-Hubbard insulator in which the spin, charge, and lattice degrees of freedom are intimately coupled, making them exhibit several interesting phenomena such as metal-insulator transition, ferroelectricity, 2D superconductivity etc. Epitaxial strain in LVO has a direct influence on their physical properties. This scenario provides an excellent playground to fine-tune the functionalities of LVO in electronic and spintronic devices. However, a thorough understanding of the epitaxial strain effect in LVO thin films has remained elusive due to the lack of systematic studies. This work demonstrates a wide-range epitaxial strain control of structural and electrical properties in high-quality LVO thin films. The epitaxial strain was imposed by cubic or pseudocubic perovskite substrates with a lattice mismatch ranging from -3.7 to +1.5% with respect to bulk LVO. Our results provide relevant guidelines to design LVO-based heterostructures for device applications.
Pulsed Laser Deposition; Thin films; Epitaxial strain; Transport properties
Settore FIS/03 - Fisica della Materia
2023
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Substrate_driven_strain_effects_in_LaVO3_thin_films_grown_by_Pulsed_Laser_Deposition.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1024788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact