Among the ecosystem services provided by urban forests, the air quality amelioration is particularly relevant. The high level of air pollution in modern cities and the indirect involvement of particulate matter (PM) in the spread of COVID-19 have exacerbated the air quality issue worldwide. However, in the estimation of urban vegetation effectiveness in particle air pollution removal, there is a lack of a standard procedure. Different methods are used for this purpose, making the comparison across different studies difficult. Therefore, there is a need of an extensive review, aimed at: i) identifying the existing direct methods to quantify this ecosystem service, ii) assessing their pros and cons, accuracy and reliability, sustainability, and iii) laying the foundations to create a standard method, commonly and universally recognized. We identified and meticulously assessed five main direct metrics: the gravimetric method (G, 40%), aerosol monitor (AM, 20.5%), wind tunnels and depo- sition chambers (WT&CH, 19.5%), Scanning Electron Microscopy (SEM, 14%) and Saturation Isothermal Remanent Magnetization (SIRM, 6%). This work provides a crystal picture and a critical framework of the last thirty years literature on this topic and lays the foundations to create a common and shareable approach to quantify the air PM mitigation potential of the urban vegetation. This will be useful to guide researchers and urban planners in shaping greener, healthier, and more sustainable cities.

Methods to quantify particle air pollution removal by urban vegetation: A review / I. Vigevani, D. Corsini, S. Comin, A. Fini, F. Ferrini. - In: ATMOSPHERIC ENVIRONMENT. X. - ISSN 2590-1621. - 21:(2024), pp. 100233.1-100233.25. [10.1016/j.aeaoa.2023.100233]

Methods to quantify particle air pollution removal by urban vegetation: A review

D. Corsini
Secondo
;
S. Comin;A. Fini
Penultimo
;
2024

Abstract

Among the ecosystem services provided by urban forests, the air quality amelioration is particularly relevant. The high level of air pollution in modern cities and the indirect involvement of particulate matter (PM) in the spread of COVID-19 have exacerbated the air quality issue worldwide. However, in the estimation of urban vegetation effectiveness in particle air pollution removal, there is a lack of a standard procedure. Different methods are used for this purpose, making the comparison across different studies difficult. Therefore, there is a need of an extensive review, aimed at: i) identifying the existing direct methods to quantify this ecosystem service, ii) assessing their pros and cons, accuracy and reliability, sustainability, and iii) laying the foundations to create a standard method, commonly and universally recognized. We identified and meticulously assessed five main direct metrics: the gravimetric method (G, 40%), aerosol monitor (AM, 20.5%), wind tunnels and depo- sition chambers (WT&CH, 19.5%), Scanning Electron Microscopy (SEM, 14%) and Saturation Isothermal Remanent Magnetization (SIRM, 6%). This work provides a crystal picture and a critical framework of the last thirty years literature on this topic and lays the foundations to create a common and shareable approach to quantify the air PM mitigation potential of the urban vegetation. This will be useful to guide researchers and urban planners in shaping greener, healthier, and more sustainable cities.
Urban vegetation; Air PM removal; Gravimetric method; SEM; Aerosol monitor; Wind tunnel; Deposition chamber; SIRM
Settore AGR/03 - Arboricoltura Generale e Coltivazioni Arboree
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
ATM ENVIRON X PM review 2024.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1024131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact