Two-dimensional electronic spectroscopy (2DES) signals for homo-oligomer J-aggregates are computed, with a focus on the role of structural change induced by low-frequency torsional modes, along with quasi-stationary trapping effects induced by high-frequency polaronic modes. To this end, a model system is derived from an ab initio parametrized site-based Hamiltonian for oligothiophenes [Binder et al., Phys. Rev. Lett., 2018, 120, 227401]. To obtain a compact representation, we introduce a collective lattice mode whose vibronic coupling depends nonlinearly on the exciton density. As a result, an N-site model with a single polaronic mode and a single torsional mode is obtained. Furthermore, a quantum-classical treatment is employed where the torsional mode is treated within a mean-field Ehrenfest/Langevin approximation. 2D electronic spectra are computed using the equation-of-motion phase-matching approach (EOM-PMA) within a wavefunction description. It is seen that the spectra combine the vibronic fine structure, due to the polaronic mode, and a dynamic Stokes shift, due to torsional relaxation. The signatures of the coherent effects and adiabatic evolution in the 2DES signals are discussed.
Signatures of coherent vibronic exciton dynamics and conformational control in the two-dimensional electronic spectroscopy of conjugated polymers / D. Brey, R. Binder, R. Martinazzo, I. Burghardt. - In: FARADAY DISCUSSIONS. - ISSN 1364-5498. - 237:0(2022 Sep 15), pp. 148-167. [10.1039/d2fd00014h]
Signatures of coherent vibronic exciton dynamics and conformational control in the two-dimensional electronic spectroscopy of conjugated polymers
R. MartinazzoPenultimo
;
2022
Abstract
Two-dimensional electronic spectroscopy (2DES) signals for homo-oligomer J-aggregates are computed, with a focus on the role of structural change induced by low-frequency torsional modes, along with quasi-stationary trapping effects induced by high-frequency polaronic modes. To this end, a model system is derived from an ab initio parametrized site-based Hamiltonian for oligothiophenes [Binder et al., Phys. Rev. Lett., 2018, 120, 227401]. To obtain a compact representation, we introduce a collective lattice mode whose vibronic coupling depends nonlinearly on the exciton density. As a result, an N-site model with a single polaronic mode and a single torsional mode is obtained. Furthermore, a quantum-classical treatment is employed where the torsional mode is treated within a mean-field Ehrenfest/Langevin approximation. 2D electronic spectra are computed using the equation-of-motion phase-matching approach (EOM-PMA) within a wavefunction description. It is seen that the spectra combine the vibronic fine structure, due to the polaronic mode, and a dynamic Stokes shift, due to torsional relaxation. The signatures of the coherent effects and adiabatic evolution in the 2DES signals are discussed.File | Dimensione | Formato | |
---|---|---|---|
d2fd00014h.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.