Objective: Breast arterial calcifications (BAC) are a sex-specific cardiovascular disease biomarker that might improve cardiovascular risk stratification in women. We implemented a deep convolutional neural network for automatic BAC detection and quantification. Methods: In this retrospective study, four readers labelled four-view mammograms as BAC positive (BAC+) or BAC negative (BAC-) at image level. Starting from a pretrained VGG16 model, we trained a convolutional neural network to discriminate BAC+ and BAC- mammograms. Accuracy, F1 score, and area under the receiver operating characteristic curve (AUC-ROC) were used to assess the diagnostic performance. Predictions of calcified areas were generated using the generalized gradient-weighted class activation mapping (Grad-CAM++) method, and their correlation with manual measurement of BAC length in a subset of cases was assessed using Spearman ρ. Results: A total 1493 women (198 BAC+) with a median age of 59 years (interquartile range 52-68) were included and partitioned in a training set of 410 cases (1640 views, 398 BAC+), validation set of 222 cases (888 views, 89 BAC+), and test set of 229 cases (916 views, 94 BAC+). The accuracy, F1 score, and AUC-ROC were 0.94, 0.86, and 0.98 in the training set; 0.96, 0.74, and 0.96 in the validation set; and 0.97, 0.80, and 0.95 in the test set, respectively. In 112 analyzed views, the Grad-CAM++ predictions displayed a strong correlation with BAC measured length (ρ = 0.88, p < 0.001). Conclusion: Our model showed promising performances in BAC detection and in quantification of BAC burden, showing a strong correlation with manual measurements. Clinical relevance statement: Integrating our model to clinical practice could improve BAC reporting without increasing clinical workload, facilitating large-scale studies on the impact of BAC as a biomarker of cardiovascular risk, raising awareness on women's cardiovascular health, and leveraging mammographic screening. Key points: • We implemented a deep convolutional neural network (CNN) for BAC detection and quantification. • Our CNN had an area under the receiving operator curve of 0.95 for BAC detection in the test set composed of 916 views, 94 of which were BAC+ . • Furthermore, our CNN showed a strong correlation with manual BAC measurements (ρ = 0.88) in a set of 112 views.

Detection and quantification of breast arterial calcifications on mammograms: a deep learning approach / N. Mobini, M. Codari, F. Riva, M.G. Ienco, D. Capra, A. Cozzi, S. Carriero, D. Spinelli, R.M. Trimboli, G. Baselli, F. Sardanelli. - In: EUROPEAN RADIOLOGY. - ISSN 1432-1084. - 33:10(2023 Oct), pp. 6746-6755. [10.1007/s00330-023-09668-z]

Detection and quantification of breast arterial calcifications on mammograms: a deep learning approach

N. Mobini
Primo
;
D. Capra
;
2023

Abstract

Objective: Breast arterial calcifications (BAC) are a sex-specific cardiovascular disease biomarker that might improve cardiovascular risk stratification in women. We implemented a deep convolutional neural network for automatic BAC detection and quantification. Methods: In this retrospective study, four readers labelled four-view mammograms as BAC positive (BAC+) or BAC negative (BAC-) at image level. Starting from a pretrained VGG16 model, we trained a convolutional neural network to discriminate BAC+ and BAC- mammograms. Accuracy, F1 score, and area under the receiver operating characteristic curve (AUC-ROC) were used to assess the diagnostic performance. Predictions of calcified areas were generated using the generalized gradient-weighted class activation mapping (Grad-CAM++) method, and their correlation with manual measurement of BAC length in a subset of cases was assessed using Spearman ρ. Results: A total 1493 women (198 BAC+) with a median age of 59 years (interquartile range 52-68) were included and partitioned in a training set of 410 cases (1640 views, 398 BAC+), validation set of 222 cases (888 views, 89 BAC+), and test set of 229 cases (916 views, 94 BAC+). The accuracy, F1 score, and AUC-ROC were 0.94, 0.86, and 0.98 in the training set; 0.96, 0.74, and 0.96 in the validation set; and 0.97, 0.80, and 0.95 in the test set, respectively. In 112 analyzed views, the Grad-CAM++ predictions displayed a strong correlation with BAC measured length (ρ = 0.88, p < 0.001). Conclusion: Our model showed promising performances in BAC detection and in quantification of BAC burden, showing a strong correlation with manual measurements. Clinical relevance statement: Integrating our model to clinical practice could improve BAC reporting without increasing clinical workload, facilitating large-scale studies on the impact of BAC as a biomarker of cardiovascular risk, raising awareness on women's cardiovascular health, and leveraging mammographic screening. Key points: • We implemented a deep convolutional neural network (CNN) for BAC detection and quantification. • Our CNN had an area under the receiving operator curve of 0.95 for BAC detection in the test set composed of 916 views, 94 of which were BAC+ . • Furthermore, our CNN showed a strong correlation with manual BAC measurements (ρ = 0.88) in a set of 112 views.
Artificial intelligence; Cardiovascular diseases; Mammography; Risk factors; Vascular calcification
Settore MED/36 - Diagnostica per Immagini e Radioterapia
ott-2023
9-mag-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00330-023-09668-z.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1022909
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact