The electrochemical CO2 reduction reaction (CO2RR) has progressed but suffers an energy penalty from CO2 loss due to carbonate formation and crossover. Cascade CO2 to CO conversion followed by CO reduction addresses this issue, but the combined figures of carbon efficiency (CE), energy efficiency (EE), selectivity, and stability require improvement. We posited that increased CO availability near active catalytic sites could maintain selectivity even under CO-depleted conditions. Here, we present a heterojunction carbon reservoir catalyst (CRC) architecture that combines copper nanoparticles with porous carbon nanoparticles. The pyridinic and pyrrolic functionalities of CRC can absorb CO enabling high CE under CO-depleted conditions. With CRC catalyst, we achieve ethanol FE and CE of 50% and 93% (CE∗Faradaic efficiency [FE] = 47%) in flow cell at 200 mA cm−2, fully doubling the best prior CE∗FE to ethanol. In membrane electrode assembly (MEA) system, we show sustained efficiency over 85 h at 100 mA cm−2.

High carbon efficiency in CO-to-alcohol electroreduction using a CO reservoir / S. Park, I. Grigioni, T. Alkayyali, B.-. Lee, J. Kim, E. Shirzadi, R. Dorakhan, G. Lee, J. Abed, F. Bossola, E.D. Jung, Y. Liang, M.G. Lee, A. Shayesteh Zeraati, D. Kim, D. Sinton, E. Sargent. - In: JOULE. - ISSN 2542-4351. - 7:10(2023), pp. 2335-2348. [10.1016/j.joule.2023.08.001]

High carbon efficiency in CO-to-alcohol electroreduction using a CO reservoir

I. Grigioni
Co-primo
;
2023

Abstract

The electrochemical CO2 reduction reaction (CO2RR) has progressed but suffers an energy penalty from CO2 loss due to carbonate formation and crossover. Cascade CO2 to CO conversion followed by CO reduction addresses this issue, but the combined figures of carbon efficiency (CE), energy efficiency (EE), selectivity, and stability require improvement. We posited that increased CO availability near active catalytic sites could maintain selectivity even under CO-depleted conditions. Here, we present a heterojunction carbon reservoir catalyst (CRC) architecture that combines copper nanoparticles with porous carbon nanoparticles. The pyridinic and pyrrolic functionalities of CRC can absorb CO enabling high CE under CO-depleted conditions. With CRC catalyst, we achieve ethanol FE and CE of 50% and 93% (CE∗Faradaic efficiency [FE] = 47%) in flow cell at 200 mA cm−2, fully doubling the best prior CE∗FE to ethanol. In membrane electrode assembly (MEA) system, we show sustained efficiency over 85 h at 100 mA cm−2.
English
carbon monoxide; carbon utilization; CO electroreduction; CO2 electroreduction; CO2 valorization; electrocatalysis; ethanol; nitrogen-doped carbon; porosity control; renewable fuels
Settore CHIM/02 - Chimica Fisica
Settore ING-IND/27 - Chimica Industriale e Tecnologica
Articolo
Esperti anonimi
Pubblicazione scientifica
Goal 7: Affordable and clean energy
Goal 13: Climate action
   Photoelectrochemical Solar Light Conversion into Fuels on Colloidal Quantum Dots Based Photoanodes (QuantumSolarFuels)
   QuantumSolarFuels
   EUROPEAN COMMISSION
   H2020
   846107
2023
Cell Press
7
10
2335
2348
14
Pubblicato
Periodico con rilevanza internazionale
scopus
crossref
Aderisco
info:eu-repo/semantics/article
High carbon efficiency in CO-to-alcohol electroreduction using a CO reservoir / S. Park, I. Grigioni, T. Alkayyali, B.-. Lee, J. Kim, E. Shirzadi, R. Dorakhan, G. Lee, J. Abed, F. Bossola, E.D. Jung, Y. Liang, M.G. Lee, A. Shayesteh Zeraati, D. Kim, D. Sinton, E. Sargent. - In: JOULE. - ISSN 2542-4351. - 7:10(2023), pp. 2335-2348. [10.1016/j.joule.2023.08.001]
embargoed_20240825
Prodotti della ricerca::01 - Articolo su periodico
17
262
Article (author)
Periodico con Impact Factor
S. Park, I. Grigioni, T. Alkayyali, B.-. Lee, J. Kim, E. Shirzadi, R. Dorakhan, G. Lee, J. Abed, F. Bossola, E.D. Jung, Y. Liang, M.G. Lee, A. Shayest...espandi
File in questo prodotto:
File Dimensione Formato  
CarbonReservoirCatalyst_MS_Revised.pdf

embargo fino al 25/08/2024

Descrizione: Article
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1022518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact