In a binary mixture, stripes refer to a one-dimensional periodicity of the composition, namely, a regular alternation of layers filled with particles of mostly one species. We have recently introduced [Munaò et al., Phys. Chem. Chem. Phys. 25, 16227 (2023)] a model that possibly provides the simplest binary mixture endowed with stripe order. The model consists of two species of identical hard spheres with equal concentration, which mutually interact through a square-well potential. In that paper, we have numerically shown that stripes are present in both liquid and solid phases when the attraction range is rather long. Here, we study the phase behavior of the model in terms of a density functional theory capable to account for the existence of stripes in the dense mixture. Our theory is accurate in reproducing the phases of the model, at least insofar as the composition inhomogeneities occur on length scales quite larger than the particle size. Then, using Monte Carlo simulations, we prove the existence of solid stripes even when the square well is much thinner than the particle diameter, making our model more similar to a real colloidal mixture. Finally, when the width of the attractive well is equal to the particle diameter, we observe a different and more complex form of compositional order in the solid, where each species of particle forms a regular porous matrix holding in its holes the other species, witnessing a surprising variety of emergent behaviors for a very basic model of interaction.

A density functional theory and simulation study of stripe phases in symmetric colloidal mixtures / S. Prestipino, D. Pini, D. Costa, G. Malescio, G. Munaò. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 159:(2023 Nov 27), pp. 204902.1-204902.16. [10.1063/5.0177209]

A density functional theory and simulation study of stripe phases in symmetric colloidal mixtures

D. Pini
Secondo
;
2023

Abstract

In a binary mixture, stripes refer to a one-dimensional periodicity of the composition, namely, a regular alternation of layers filled with particles of mostly one species. We have recently introduced [Munaò et al., Phys. Chem. Chem. Phys. 25, 16227 (2023)] a model that possibly provides the simplest binary mixture endowed with stripe order. The model consists of two species of identical hard spheres with equal concentration, which mutually interact through a square-well potential. In that paper, we have numerically shown that stripes are present in both liquid and solid phases when the attraction range is rather long. Here, we study the phase behavior of the model in terms of a density functional theory capable to account for the existence of stripes in the dense mixture. Our theory is accurate in reproducing the phases of the model, at least insofar as the composition inhomogeneities occur on length scales quite larger than the particle size. Then, using Monte Carlo simulations, we prove the existence of solid stripes even when the square well is much thinner than the particle diameter, making our model more similar to a real colloidal mixture. Finally, when the width of the attractive well is equal to the particle diameter, we observe a different and more complex form of compositional order in the solid, where each species of particle forms a regular porous matrix holding in its holes the other species, witnessing a surprising variety of emergent behaviors for a very basic model of interaction.
binary mixtures; vapor-liquid transition; microphases; stripes; density-functional theory; Monte Carlo simulation;
Settore FIS/03 - Fisica della Materia
   Piano di Sostegno alla Ricerca 2015-2017 - Linea 2 "Dotazione annuale per attività istituzionali" (anno 2021)
   UNIVERSITA' DEGLI STUDI DI MILANO
27-nov-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
204902_1_5.0177209.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 6.82 MB
Formato Adobe PDF
6.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1021551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact