We show that "gravity at cosmological distances: explaining the accelerating expansion without dark energy"recently proposed by J. Harada [Phys. Rev. D 108, 044031 (2023)PRVDAQ2470-001010.1103/PhysRevD.108.044031] is equivalent to the Einstein equation extended by the presence of an arbitrary conformal Killing tensor. This turns Harada's equations of third order in the derivatives of the metric tensor to second order, and offers a strategy of solution that covariantly shortcuts Harada's derivation and obtains both modified Friedmann equations. Another illustration is presented for the case of flat space and constant curvature.

Note on Harada’s conformal Killing gravity / C.A. Mantica, L.G. Molinari. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 108:12(2023 Dec 13), pp. 124029.1-124029.5. [10.1103/PhysRevD.108.124029]

Note on Harada’s conformal Killing gravity

C.A. Mantica
Primo
;
L.G. Molinari
Ultimo
2023

Abstract

We show that "gravity at cosmological distances: explaining the accelerating expansion without dark energy"recently proposed by J. Harada [Phys. Rev. D 108, 044031 (2023)PRVDAQ2470-001010.1103/PhysRevD.108.044031] is equivalent to the Einstein equation extended by the presence of an arbitrary conformal Killing tensor. This turns Harada's equations of third order in the derivatives of the metric tensor to second order, and offers a strategy of solution that covariantly shortcuts Harada's derivation and obtains both modified Friedmann equations. Another illustration is presented for the case of flat space and constant curvature.
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
13-dic-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevD.108.124029.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 183.64 kB
Formato Adobe PDF
183.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2308.06803.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 139.9 kB
Formato Adobe PDF
139.9 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1021009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact