The object of the present paper is to study weakly cyclic Z symmetric manifolds. Some geometric properties have been studied. We obtain a sufficient condition for a weakly cyclic Z symmetric manifold to be a quasi Einstein manifold. Next we consider conformally flat weakly cyclic Z symmetric manifolds. Then we study Einstein (WCZS)n (n > 2). Also we study decomposable (WCZS)n (n > 2). We prove the equivalency of semisymmetry and Weyl-semisymmetry in a (WCZS)n (n > 2). Finally, we give an example of a (WCZS)4.

On weakly cyclic Z symmetric manifolds / U.C. De, C.A. Mantica, Y.J. Suh. - In: ACTA MATHEMATICA HUNGARICA. - ISSN 0236-5294. - 146:1(2015 Jun), pp. 153-167. [10.1007/s10474-014-0462-9]

On weakly cyclic Z symmetric manifolds

C.A. Mantica
Secondo
;
2015

Abstract

The object of the present paper is to study weakly cyclic Z symmetric manifolds. Some geometric properties have been studied. We obtain a sufficient condition for a weakly cyclic Z symmetric manifold to be a quasi Einstein manifold. Next we consider conformally flat weakly cyclic Z symmetric manifolds. Then we study Einstein (WCZS)n (n > 2). Also we study decomposable (WCZS)n (n > 2). We prove the equivalency of semisymmetry and Weyl-semisymmetry in a (WCZS)n (n > 2). Finally, we give an example of a (WCZS)4.
pseudo symmetric manifold; pseudo Z symmetric manifold; weakly cyclic Z symmetric manifold; weakly Ricci symmetric manifold; weakly Z symmetric manifold
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore MAT/03 - Geometria
giu-2015
17-nov-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
s10474-014-0462-9.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 654.03 kB
Formato Adobe PDF
654.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1019944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact