First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

Machine learning and LHC event generation / A. Butter, T. Plehn, S. Schumann, S. Badger, S. Caron, K. Cranmer, F. Armando Di Bello, E. Dreyer, S. Forte, S. Ganguly, D. Gon??alves, E. Gross, T. Heimel, G. Heinrich, L. Heinrich, A. Held, S. H??che, J.N. Howard, P. Ilten, J. Isaacson, T. Jan??en, S. Jones, M. Kado, M. Kagan, G. Kasieczka, F. Kling, S. Kraml, C. Krause, F. Krauss, K. Kr??ninger, R. Kumar Barman, M. Luchmann, V. Magerya, D. Maitre, B. Malaescu, F. Maltoni, T. Martini, O. Mattelaer, B. Nachman, S. Pitz, J. Rojo, M. Schwartz, D. Shih, F. Siegert, R. Stegeman, B. Stienen, J. Thaler, R. Verheyen, D. Whiteson, R. Winterhalder, J. Zupan. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 14:4(2023), pp. 079.1-079.32. [10.21468/scipostphys.14.4.079]

Machine learning and LHC event generation

S. Forte;R. Stegeman;
2023

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.
English
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
Settore INF/01 - Informatica
Review essay
Esperti anonimi
Pubblicazione scientifica
   Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
   NNNPDF
   EUROPEAN COMMISSION
   H2020
   740006
2023
SciPost Foundation
14
4
079
1
32
32
Pubblicato
Periodico con rilevanza internazionale
datacite
crossref
Aderisco
info:eu-repo/semantics/article
Machine learning and LHC event generation / A. Butter, T. Plehn, S. Schumann, S. Badger, S. Caron, K. Cranmer, F. Armando Di Bello, E. Dreyer, S. Forte, S. Ganguly, D. Gon??alves, E. Gross, T. Heimel, G. Heinrich, L. Heinrich, A. Held, S. H??che, J.N. Howard, P. Ilten, J. Isaacson, T. Jan??en, S. Jones, M. Kado, M. Kagan, G. Kasieczka, F. Kling, S. Kraml, C. Krause, F. Krauss, K. Kr??ninger, R. Kumar Barman, M. Luchmann, V. Magerya, D. Maitre, B. Malaescu, F. Maltoni, T. Martini, O. Mattelaer, B. Nachman, S. Pitz, J. Rojo, M. Schwartz, D. Shih, F. Siegert, R. Stegeman, B. Stienen, J. Thaler, R. Verheyen, D. Whiteson, R. Winterhalder, J. Zupan. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 14:4(2023), pp. 079.1-079.32. [10.21468/scipostphys.14.4.079]
open
Prodotti della ricerca::01 - Articolo su periodico
51
262
Article (author)
Periodico con Impact Factor
A. Butter, T. Plehn, S. Schumann, S. Badger, S. Caron, K. Cranmer, F. Armando Di Bello, E. Dreyer, S. Forte, S. Ganguly, D. Gon??alves, E. Gross, T. H...espandi
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_14_4_079.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1019810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact